Unknown

Dataset Information

0

Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism.


ABSTRACT: Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically follow a sigmoidal curve. First, a single bacterium attaches at cell-cell junctions. This is followed by rapid recruitment of free-swimming bacteria and association of bacterial cells resulting in the formation of an aggregate on the order of minutes. Aggregates are associated with phosphatidylinositol 3,4,5-trisphosphate (PIP3)-enriched host cell membrane protrusions. We further show that aggregates can be rapidly internalized into epithelial cells. Lyn, a member of the Src family tyrosine kinases previously implicated in P. aeruginosa infection, mediates both PIP3-enriched protrusion formation and aggregate internalization. Our results establish the first framework of principles that define P. aeruginosa transition to multicellular structures during interaction with host cells.

SUBMITTER: Lepanto P 

PROVIDER: S-EPMC3813436 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism.

Lepanto Paola P   Bryant David M DM   Rossello Jéssica J   Datta Anirban A   Mostov Keith E KE   Kierbel Arlinet A  

Cellular microbiology 20110525 8


Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically fol  ...[more]

Similar Datasets

| S-EPMC2653510 | biostudies-literature
| S-EPMC8853526 | biostudies-literature
| S-EPMC10382557 | biostudies-literature
| S-EPMC1087506 | biostudies-literature
| S-EPMC4879508 | biostudies-literature
| S-EPMC6458069 | biostudies-literature
| S-EPMC6695387 | biostudies-literature
| S-EPMC7927922 | biostudies-literature
| S-EPMC2795306 | biostudies-literature
| S-EPMC3572047 | biostudies-literature