Unknown

Dataset Information

0

The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments.


ABSTRACT:

Background

Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda.

Results

To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations.The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications.

Conclusions

We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.

SUBMITTER: Hedt-Gauthier BL 

PROVIDER: S-EPMC3819670 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments.

Hedt-Gauthier Bethany L BL   Mitsunaga Tisha T   Hund Lauren L   Olives Casey C   Pagano Marcello M  

Emerging themes in epidemiology 20131026 1


<h4>Background</h4>Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program i  ...[more]

Similar Datasets

| S-EPMC4047169 | biostudies-literature
| S-EPMC6438814 | biostudies-literature
| S-EPMC3276714 | biostudies-literature
| S-EPMC7687829 | biostudies-literature
| S-EPMC3435238 | biostudies-literature
| S-EPMC4864281 | biostudies-literature
| S-EPMC9707425 | biostudies-literature
| S-EPMC3459971 | biostudies-literature
| S-EPMC3600627 | biostudies-literature
| S-EPMC8084134 | biostudies-literature