Signaling by p38 MAPK stimulates nuclear localization of the microprocessor component p68 for processing of selected primary microRNAs.
Ontology highlight
ABSTRACT: The importance of microRNAs (miRNAs) in biological and disease processes necessitates a better understanding of the mechanisms that regulate miRNA abundance. We showed that the activities of the mitogen-activated protein kinase (MAPK) p38 and its downstream effector kinase MAPK-activated protein kinase 2 (MK2) were necessary for the efficient processing of a subset of primary miRNAs (pri-miRNAs). Through yeast two-hybrid screening, we identified p68 (also known as DDX5), a key component of the Drosha complex that processes pri-miRNAs, as an MK2-interacting protein, and we found that MK2 phosphorylated p68 at Ser(197) in cells. In wild-type mouse embryonic fibroblasts (MEFs) treated with a p38 inhibitor or in MK2-deficient (MK2(-/-)) MEFs, expression of a phosphomimetic mutant p68 fully restored pri-miRNA processing, suggesting that MK2-mediated phosphorylation of p68 was essential for this process. We found that, whereas p68 was present in the nuclei of wild-type MEFs, it was found mostly in the cytoplasm of MK2(-/-) MEFs. Nuclear localization of p68 depended on MK2-mediated phosphorylation of Ser(197). In addition, inhibition of p38 MAPK promoted the growth of wild-type MEFs and breast cancer MCF7 cells by enhancing the abundance of c-Myc through suppression of the biogenesis of the miRNA miR-145, which targets c-Myc. Because pri-miRNA processing occurs in the nucleus, our findings suggest that the p38 MAPK-MK2 signaling pathway promotes miRNA biogenesis by facilitating the nuclear localization of p68.
SUBMITTER: Hong S
PROVIDER: S-EPMC3820758 | biostudies-literature | 2013 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA