ABSTRACT: A comparative study of amino acid sequence and physicochemical properties indicates the affiliation of protein from the nitrilase/cyanide hydratase family. This family contains nitrilases that break carbon-nitrogen bonds and appear to be involved in the reduction of organic nitrogen compounds and ammonia production. They all have distinct substrate specificity and include nitrilase, cyanide hydratases, aliphatic amidases, beta-alanine synthase, and a few other proteins with unknown molecular function. These sequences were analyzed for different physical and chemical properties and to relate these observed differences to the thermostability properties, phylogenetic tree construction and the evolutionary relationship among them. In this work, in silico analysis of amino acid sequences of mesophilic (15) and thermophilic (archaea, 15 and bacteria, 15) proteins has been done. The physiochemical properties of these three groups of nitrilase/cyanide hydratase family also differ in number of amino acids, molecular weight, pI values, positively charged ions, i.e. Arg + Lys, aliphatic index and grand average of hydropathacity (GRAVY). The amino acid Ala (1.37-fold) was found to be higher in mesophilic bacteria as compared to thermophilic bacteria but Lys and Phe were found to be significantly high (1.43 and 1.39-fold, respectively) in case of thermophilic bacteria. The amino acids Ala, Cys, Gln, His and Thr were found to be significantly higher (1.41, 1.6, 1.77, 1.44 and 1.29-fold, respectively) in mesophilic bacteria as compared to thermophilic archaea, where Glu, Leu and Val were found significantly high (1.22, 1.19 and 1.26-fold, respectively).