Traceless cross-linker for photocleavable bioconjugation.
Ontology highlight
ABSTRACT: Photoresponsive bioconjugation empowers the development of novel methods for drug discovery, disease diagnosis, and high-throughput screening, among others. In this paper, we report on the characteristics of a traceless photocleavable cross-linker, di-6-(3-succinimidyl carbonyloxymethyl-4-nitro-phenoxy)-hexanoic acid disulfide diethanol ester (SCNE). The traceless feature and the biocompatibility of this photocleavable cross-linking reagent were corroborated. Consequently, we demonstrated its application in reversible phage particle immobilization that could provide a platform for direct single-phage screening. We also applied it in protein-photoprinting, where SCNE acts as a "photo-eraser" to remove the cross-linked protein molecules at a desired region in a simple, clean, and light-controllable fashion. We further demonstrated the two-tier atomic force microscopic (AFM) method that uses SCNE to carry out two subsequent AFM tasks in situ. The approach allows guided protein delivery and subsequent high-resolution imaging at the same local area, thus opening up the possibility of monitoring protein functions in live cells. The results imply that SCNE is a versatile cross-linker that can be used for a wide range of applications where photocleavage ensures clean and remote-controllable release of biological molecules from a substrate.
SUBMITTER: Wang R
PROVIDER: S-EPMC3826797 | biostudies-literature | 2012 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA