Unknown

Dataset Information

0

A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.


ABSTRACT: Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.

SUBMITTER: An S 

PROVIDER: S-EPMC3832006 | biostudies-literature | 2013 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.

An Sungwon S   Harang Rich R   Meeker Kirsten K   Granados-Fuentes Daniel D   Tsai Connie A CA   Mazuski Cristina C   Kim Jihee J   Doyle Francis J FJ   Petzold Linda R LR   Herzog Erik D ED  

Proceedings of the National Academy of Sciences of the United States of America 20131028 46


Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of th  ...[more]

Similar Datasets

| S-EPMC3990482 | biostudies-literature
| S-EPMC2706452 | biostudies-literature
| S-EPMC6085153 | biostudies-literature
| S-EPMC3856944 | biostudies-literature
| S-EPMC3112533 | biostudies-literature
| S-EPMC4528595 | biostudies-literature
| S-EPMC3010105 | biostudies-literature
| S-EPMC3827739 | biostudies-literature
| S-EPMC2590749 | biostudies-literature
| S-EPMC5144065 | biostudies-literature