Ontology highlight
ABSTRACT: Motivation
Sequence similarity searches performed with BLAST, SSEARCH and FASTA achieve high sensitivity by using scoring matrices (e.g. BLOSUM62) that target low identity (<33%) alignments. Although such scoring matrices can effectively identify distant homologs, they can also produce local alignments that extend beyond the homologous regions.Results
We measured local alignment start/stop boundary accuracy using a set of queries where the correct alignment boundaries were known, and found that 7% of BLASTP and 8% of SSEARCH alignment boundaries were overextended. Overextended alignments include non-homologous sequences; they occur most frequently between sequences that are more closely related (>33% identity). Adjusting the scoring matrix to reflect the identity of the homologous sequence can correct higher identity overextended alignment boundaries. In addition, the scoring matrix that produced a correct alignment could be reliably predicted based on the sequence identity seen in the original BLOSUM62 alignment. Realigning with the predicted scoring matrix corrected 37% of all overextended alignments, resulting in more correct alignments than using BLOSUM62 alone.
SUBMITTER: Mills LJ
PROVIDER: S-EPMC3834790 | biostudies-literature | 2013 Dec
REPOSITORIES: biostudies-literature
Mills Lauren J LJ Pearson William R WR
Bioinformatics (Oxford, England) 20130831 23
<h4>Motivation</h4>Sequence similarity searches performed with BLAST, SSEARCH and FASTA achieve high sensitivity by using scoring matrices (e.g. BLOSUM62) that target low identity (<33%) alignments. Although such scoring matrices can effectively identify distant homologs, they can also produce local alignments that extend beyond the homologous regions.<h4>Results</h4>We measured local alignment start/stop boundary accuracy using a set of queries where the correct alignment boundaries were known, ...[more]