Ontology highlight
ABSTRACT: Background
Despite its importance for reducing wildlife-vehicle collisions, there is still incomplete understanding of factors responsible for high road mortality. In particular, few empirical studies examined the idea that spatial variation in roadkills is influenced by a complex interplay between road-related factors, and species-specific habitat quality and landscape connectivity.Methodology/principal findings
In this study we addressed this issue, using a 7-year dataset of tawny owl (Strix aluco) roadkills recorded along 37 km of road in southern Portugal. We used a multi-species roadkill index as a surrogate of intrinsic road risk, and we used a Maxent distribution model to estimate habitat suitability. Landscape connectivity was estimated from least-cost paths between tawny owl territories, using habitat suitability as a resistance surface. We defined 10 alternative scenarios to compute connectivity, based on variation in potential movement patterns according to territory quality and dispersal distance thresholds. Hierarchical partitioning of a regression model indicated that independent variation in tawny owl roadkills was explained primarily by the roadkill index (70.5%) and, to a much lesser extent, by landscape connectivity (26.2%), while habitat suitability had minor effects (3.3%). Analysis of connectivity scenarios suggested that owl roadkills were primarily related to short range movements (<5 km) between high quality territories. Tawny owl roadkills were spatially autocorrelated, but the introduction of spatial filters in the regression model did not change the type and relative contribution of environmental variables.Conclusions
Overall, results suggest that road-related factors may have a dominant influence on roadkill patterns, particularly in areas like ours where habitat quality and landscape connectivity are globally high for the study species. Nevertheless, the study supported the view that functional connectivity should be incorporated whenever possible in roadkill models, as it may greatly increase their power to predict the location of roadkill hotspots.
SUBMITTER: Santos SM
PROVIDER: S-EPMC3836987 | biostudies-literature |
REPOSITORIES: biostudies-literature