Project description:Seoul virus (SEOV) is responsible for 25% of cases of hemorrhagic fever with renal syndrome in Asia. Here we report the complete genome of strain DPRK08. The sequence information provided here is useful for understanding the molecular character of SEOV in the Democratic People's Republic of Korea (DPRK) and the circulation of SEOV in East Asia.
Project description:IntroductionHantaviruses are maintained by mammalian hosts, such as rodents, and are shed in their excretions. Clinical disease can occur in humans from spillover infection. Brown rats (Rattus norvegicus) are the globally distributed reservoir host of Seoul virus (SEOV). Human cases of SEOV-associated haemorrhagic fever with renal syndrome (SEOV-HFRS)have been reported in Great Britain (GB) since 1977.MethodsBrown rats (n=68) were trapped from a variety of peridomestic locations, with a focus on pig farms. Kidney and lung tissues were tested for viral RNA using a pan-hantavirus RT-PCR assay followed by Sanger sequencing and analysis.ResultsSEOV RNA was detected in 19 per cent (13/68, 95% CI 11 to 30) of rats and all sequences fell within SEOV lineage 9. Twelve sequences were highly similar to each other and to the previously reported GB Humber strain of SEOV (98 per cent). One rat SEOV sequence was more distant. The SEOV prevalence in rats from pig farms was significantly greater (p=0.047) than other sites sampled. No significant sex or age differences were observed among positive and negative rats.DiscussionThe results from this study suggest that SEOV could be widespread in wild rats in GB and therefore pose a potential risk to public health.
Project description:To clarify the mechanism of Seoul orthohantavirus (SEOV) persistence, we compared the humoral and cell-mediated immune responses to SEOV in experimentally and naturally infected brown rats. Rats that were experimentally infected by the intraperitoneal route showed transient immunoglobulin M (IgM) production, followed by an increased anti-SEOV immunoglobulin G (IgG) antibody response and maturation of IgG avidity. The level of SEOV-specific cytotoxic T lymphocytes (CTLs) peaked at 6 days after inoculation and the viral genome disappeared from serum. In contrast, naturally infected brown rats simultaneously had a high rate of SEOV-specific IgM and IgG antibodies (28/43). Most of the IgM-positive rats (24/27) had the SEOV genome in their lungs, suggesting that chronic SEOV infection was established in those rats. In female rats with IgG avidity maturation, the viral load in the lungs was decreased. On the other hand, there was no relationship between IgG avidity and viral load in the lungs in male rats. A CTL response was not detected in naturally infected rats. The difference between immune responses in the experimentally and naturally infected rats is associated with the establishment of chronic infection in natural hosts.
Project description:Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BACKGROUND: Hepatitis E virus (HEV) transmitted via the oral route through the consumption of contaminated water or uncooked or undercooked contaminated meat has been implicated in major outbreaks. Rats may play a critical role in HEV outbreaks, considering their negative effects on environmental hygiene and food sanitation. Although the serological evidence of HEV infection in wild rodents has been reported worldwide, the infectivity and propagation of HEV in wild rats remain unknown. To investigate if rats are a possible carrier of HEV, we studied wild Norway rats (Rattus norvegicus) that were caught near a pig farm, where HEV was prevalent among the pigs. METHODS: We examined 56 Norway rats for HEV. RNA from internal organs was examined for RT-PCR and positive samples were sequenced. Positive tissue samples were incubated with A549 cell line to isolate HEV. Anti-HEV antibodies were detected by ELISA. RESULTS: Sixteen rats were seropositive, and the HEV RNA was detected in 10 of the 56 rats. Sequencing of the partial ORF1 gene from 7 samples resulted in partially sequenced HEV, belonging to genotype 3, which was genetically identical to the HEV prevalent in the swine from the source farm. The infectious HEVs were isolated from the Norway rats by using the human A549 cell line. CONCLUSIONS: There was a relatively high prevalence (17.9%) of the HEV genome in wild Norway rats. The virus was mainly detected in the liver and spleen. The results indicate that these animals might be possible carrier of swine HEV in endemic regions. The HEV contamination risk due to rats needs to be examined in human habitats.
Project description:Ecological factors, such as predation, have traditionally been used to explain sociability. However, it is increasingly recognised that individuals within a group do not associate randomly, and that these non-random associations can generate fitness advantages. The majority of the empirical evidence on differentiated associations in group-living mammals, however, comes from a limited number of taxa and we still know very little about their occurrence and characteristics in some highly social species, such as rats (Rattus spp.). Here, using network analysis, we quantified association patterns in four groups of male fancy rats. We found that the associations between rats were not randomly distributed and that most individuals had significantly more preferred/avoided associates than expected by random. We also found that these preferences can be stable over time, and that they were not influenced by individuals' rank position in the dominance hierarchy. Our findings are consistent with work in other mammals, but contrast with the limited evidence available for other rat strains. While further studies in groups with different demographic composition are warranted to confirm our findings, the occurrence of differentiated associations in all male groups of rats have important implications for the management and welfare of captive rat populations.
Project description:Individual differences in behaviors are seen across many species, and investigations have focused on traits linked to aggression, risk taking, emotionality, coping styles, and differences in cognitive systems. The current study investigated whether there were individual differences in proactive interference tasks in rats (Rattus Norvegicus), and tested hypotheses suggesting that these tasks should load onto a single factor and there should be clusters of rats who perform well or poorly on these tasks. The performance of 39 rats was tested across three learning tasks that all involved disengagement from an irrelevant previously learned stimulus to a relevant stimulus: latent inhibition (LI), partial reinforcement extinction effect (PREE), and reversal learning (RL). An exploratory factor analysis revealed the existence of one factor underlying performance. A cluster analysis revealed the existence of sets of rats displaying either weak LI and strong PREE and RL effects, or vice versa. These findings suggest that proactive interference may be based on a single underlying psychological system in rats.
Project description:Rodents are important hosts of hantaviruses, and lungs and kidneys are known to be the preferred organs of these viruses. Recently, hantaviruses were detected in liver samples from wild rodents in Hungary and the United States, and feeder rats in the Netherlands. However, few studies have detected hantaviruses in the liver of rats from China. In this study, hantaviruses were investigated in liver samples from R. norvegicus and R. tanezumi trapped in urban areas of southern China. A total of 461 R. norvegicus and 64 R. tanezumi were trapped. Using a pan-hantavirus PCR method, hantaviruses were detected in liver, lung, and serum samples from these animals. About 7.43% of liver samples were positive for Seoul virus (SEOV). The detection rate of SEOV in liver samples from R. norvegicus (8.24%) was higher than that from R. tanezumi (1.56%), suggesting the predominant role of R. norvegicus in the transmission of SEOV in urban areas of China. Three R. norvegicus had SEOV RNA in their liver samples but not in their lung samples, suggesting that the liver might be one of the targeted organs of SEOV. The first full SEOV protein-coding sequences (CDS) of the S and M segments, and partial CDS of the L segment from R. tanezumi were amplified. Several full and partial CDS of the S, M, and L segments from R. norvegicus were also obtained. The SEOV sequences obtained from different animals were highly similar, suggesting the cross-species transmission potential of SEOV between R. norvegicus and R. tanezumi.
Project description:Many studies have attempted to shed light on the ability of non-human animals to understand physical causality by investigating their tool-use behavior. This study aimed to develop a tool-manipulation task for rodents in which the subjects could not manipulate the tool in the direction of the reward by simple patterned behavior. Eight rats had to use a rake-shaped tool to obtain a food reward placed beyond their reach. During the training, the rats never moved the rakes laterally to obtain the reward. However, in the positional discrimination test, the rake was placed at the center of the experimental apparatus, and the reward was positioned on either the left or right side of the rake. Interestingly, this test indicated that some rats were able to manipulate the rake toward the reward without relying on a patterned behavior acquired during the training. These results suggested that rats have the primitive ability to understand causal relationships in the physical environment. The findings indicate that rats can potentially serve as an animal model to investigate the mechanisms of evolution and development of the understanding of physical causality in humans.