Lung Cancer Susceptibility and hOGG1 Ser326Cys Polymorphism: A Meta-Analysis.
Ontology highlight
ABSTRACT: Recent lung cancer studies have focused on identifying the effects of single nucleotide polymorphisms (SNPs) in candidate genes, among which DNA repair genes are increasingly being studied. Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. In this study, we tried to assess reported studies of association between polymorphism of human 8-oxoguanine DNA glycosylase 1 (hOGG1) Ser326Cys and lung cancer. We conducted MEDLINE, Current Contents and Web of Science searches using "hOGG1", "lung cancer" and "polymorphism" as keywords to search for papers published (from January 1995 through August 2010). Data were combined using both a fixed effects (the inverse variance-weighted method) and a random effects (DerSimonian and Laird method) model. The Cochran Q test was used for the assessment of heterogeneity. Publication bias was assessed by both Begg's and Egger's tests. We identified 20 case-control studies in 21 different ethnic populations. As two studies were not in the Hardy-Weinberg equilibrium, 18 case-control studies in 19 different ethnic populations (7,792 cases and 9,358 controls) were included in our meta-analysis. Summary frequencies of the Cys allele among aucasians and Asians based on the random effects model were 20.9% (95% confidence interval (CI) = 18.9-22.9) and 46.1% (95% CI = 40.2-52.0), respectively. The distribution of the Cys allele was significantly different between Asians and Caucasians (P < 0.001). The Cys/Cys genotype was significantly associated with lung cancer risk in Asian populations (odds ratio = 1.27, 95% CI = 1.09-1.48) but not in Caucasian populations. This ethnic difference in lung cancer risk may be due to environmental factors such as cigarette smoking and dietary factors. Although the summary risk for developing lung cancer may not be large, lung cancer is such a common malignancy that even a small increase in risk can translate to a large number of excess lung cancer cases. As lung cancer is a multifactorial disease, further investigations of the gene-gene and gene-environment interactions on the hOGG1 polymorphism-associated lung cancer risk may help to better understand of the molecular pathogenesis of human lung cancer.
SUBMITTER: Kiyohara C
PROVIDER: S-EPMC3840447 | biostudies-literature | 2010 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA