Project description:Many RNA viruses arise from animal reservoirs, namely bats, rodents and insectivores but mechanisms of virus maintenance and transmission still need to be addressed. The bicolored white-toothed shrew (Crocidura leucodon) has recently been identified as reservoir of the neurotropic Borna disease virus 1 (BoDV-1).Six out of eleven wild living bicoloured white-toothed shrews were trapped and revealed to be naturally infected with BoDV-1. All shrews were monitored in captivity in a long-term study over a time period up to 600 days that differed between the individual shrews. Interestingly, all six animals showed an asymptomatic course of infection despite virus shedding via various routes indicating a highly adapted host-pathogen interaction. Infectious virus and viral RNA were demonstrated in saliva, urine, skin swabs, lacrimal fluid and faeces, both during the first 8 weeks of the investigation period and for long time shedding after more than 250 days in captivity.The various ways of shedding ensure successful virus maintenance in the reservoir population but also transmission to accidental hosts such as horses and sheep. Naturally BoDV-1-infected living shrews serve as excellent tool to unravel host and pathogen factors responsible for persistent viral co-existence in reservoir species while maintaining their physiological integrity despite high viral load in many organ systems.
Project description:Borna disease virus (BDV) is the causative agent of severe T-cell-mediated meningoencephalitis in horses, sheep, and other animal species in central Europe. Here we report the first unequivocal detection of a BDV reservoir species, the bicolored white-toothed shrew, Crocidura leucodon, in an area in Switzerland with endemic Borna disease.
Project description:Borna disease (BD) is a sporadic neurologic disease of horses and sheep caused by mammalian Borna disease virus (BDV). Its unique epidemiological features include: limited occurrence in certain endemic regions of central Europe, yearly varying disease peaks, and a seasonal pattern with higher disease frequencies in spring and a disease nadir in autumn. It is most probably not directly transmitted between horses and sheep. All these features led to the assumption that an indigenous virus reservoir of BDV other than horses and sheep may exist. The search for such a reservoir had been unsuccessful until a few years ago five BDV-infected shrews were found in a BD-endemic area in Switzerland. So far, these data lacked further confirmation. We therefore initiated a study in shrews in endemic areas of Germany. Within five years 107 shrews of five different species were collected. BDV infections were identified in 14 individuals of the species bicolored white-toothed shrew (Crocidura leucodon, HERMANN 1780), all originating from BD-endemic territories. Immunohistological analysis showed widespread distribution of BDV antigen both in the nervous system and in epithelial and mesenchymal tissues without pathological alterations. Large amounts of virus, demonstrated by presence of viral antigen in epithelial cells of the oral cavity and in keratinocytes of the skin, may be a source of infection for natural and spill-over hosts. Genetic analyses reflected a close relationship of the BDV sequences obtained from the shrews with the regional BDV cluster. At one location a high percentage of BDV-positive shrews was identified in four consecutive years, which points towards a self-sustaining infection cycle in bicolored white-toothed shrews. Analyses of behavioral and population features of this shrew species revealed that the bicolored white-toothed shrew may indeed play an important role as an indigenous host of BDV.
Project description:New findings of the white-toothed shrews (Crocidura spp.) from offshore islands of Vietnam are reported. The species identifications have been confirmed by the analysis of complete mitochondrial cytochrome b gene (1140 bp). Crocidura phuquocensis is the only species found in the Phu Quoc Island. Crocidura fuliginosa has been recorded from two islands of the Con Dao Archipelago (Con Son and Bai Canh). The occurrence of Crocidura fuliginosa in Vietnam has been genetically confirmed for the first time. Crocidura attenuata has been collected from the Cat Ba Island for the first time, and this finding corresponds well with the proposal that the species' distribution is confined to the north and east of the Red River only.
Project description:While the viromes and immune systems of bats and rodents have been extensively studied, comprehensive data are lacking for insectivores (order Eulipotyphla) despite their wide geographic distribution. Anthropogenic land use and outdoor recreational activities, as well as changes in the range of shrews, may lead to an expansion of the human-shrew interface with the risk of spillover infections, as reported for Borna disease virus 1. We investigated the virome of 45 individuals of 4 white-toothed shrew species present in Europe, using metagenomic RNA sequencing of tissue and intestine pools. Moderate to high abundances of sequences related to the families Paramyxoviridae, Nairoviridae, Hepeviridae and Bornaviridae were detected. Whole genomes were determined for novel orthoparamyxoviruses (n=3), orthonairoviruses (n=2) and an orthohepevirus. The novel paramyxovirus, tentatively named Hasua virus, was phylogenetically related to the zoonotic Langya virus and Mòjiāng virus. The novel orthonairoviruses, along with the potentially zoonotic Erve virus, fall within the shrew-borne Thiafora virus genogroup. The highest viral RNA loads of orthoparamyxoviruses were detected in the kidneys, in well-perfused organs for orthonairoviruses and in the liver and intestine for orthohepevirus, indicating potential transmission routes. Notably, several shrews were found to be coinfected with viruses from different families. Our study highlights the virus diversity present in shrews, not only in biodiversity-rich regions but also in areas influenced by human activity. This study warrants further research to characterize and assess the clinical implications and risk of these viruses and the importance of shrews as reservoirs in European ecosystems.
Project description:BACKGROUND:Crocidura, the most speciose mammalian genus, occurs across much of Asia, Europe and Africa. The taxonomy of Chinese representatives has been studied primarily based on cursory morphological comparisons and their molecular phylogenetic analyses remain unexplored. In order to understand the phylogeny of this group in China, we estimated the first multilocus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. RESULTS:We obtained one mitochondrial gene (cytb) (~?1, 134?bp) and three nuclear genes (ApoB, BRCA1, RAG1) (~?2, 170?bp) for 132 samples from 57 localities. Molecular analyses identified at least 14 putative species that occur within two major well-supported groups in China. Polyphyletic C. wuchihensis appears to be composed of two putative species. Two subspecies, C. rapax rapax and C. rapax kurodai should be elevated to full species status. A phylogenetic tree based on mitochondrial gene from Asian Crocidura species showed that the C. rapax rapax is embedded within C. attenuata, making the latter a paraphyletic group. Three strongly supported undescribed species (C. sp.1, C. sp.2 and C. sp.3) are revealed from Zada County of Tibet (Western China), Hongjiang County of Hunan Province (Central China) and Dongyang County of Zhejiang Province (Eastern China), Motuo County of Tibet, respectively. The divergence time estimation suggested that China's Crocidura species began to diversify during the late Pliocene (3.66?Ma) and the Early Pleistocene (2.29?Ma), followed by a series of diversifications through the Pleistocene. CONCLUSIONS:The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. We propose that the three undescribed species should be evaluated using extensive taxon sampling and comprehensive morphological and morphometric approaches. Climate change since the late Pliocene and the uplift of the Qinghai-Tibet Plateau may result in the diversification and speciation of China's Crocidura species. In short, the underestimated diversity underlines the need for a taxonomic revision of Chinese Crocidura species.
Project description:Powassan virus lineage 2 (deer tick virus) is an emergent threat to American public health, causing severe neurologic disease. Its life cycle in nature remains poorly understood. We use a host-specific retrotransposon-targeted real time PCR assay to test the hypothesis that white-footed mice, considered the main eastern U.S. reservoir of the coinfecting agent of Lyme disease, is the reservoir for deer tick virus. Of 20 virus-infected host-seeking nymphal black-legged ticks 65% fed on shrews and none on mice. The proportion of ticks feeding on shrews at a site is positively associated with prevalence of viral infection, but not the Lyme disease agent. Viral RNA is detected in the brain of one shrew. We conclude that shrews are a likely reservoir host for deer tick virus and that host bloodmeal analysis can provide direct evidence to incriminate reservoir hosts, thereby promoting our understanding of the ecology of tick-borne infections.