Unknown

Dataset Information

0

Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells.


ABSTRACT: Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19. Two nonintegrative baculoviral vectors were used for cotransduction, one expressing ZFNs and another as a donor vector encoding the four transcription factors. iPSC colonies were obtained at a high efficiency of 12% (the mean value of eight individual experiments). All characterized iPSC clones carried the transgenic cassette only at the ZFN-specified AAVS1 locus. We further demonstrated that when the donor cassette was flanked by heterospecific loxP sequences, the reprogramming genes in iPSCs could be replaced by another transgene using a baculoviral vector-based Cre recombinase-mediated cassette exchange system, thereby producing iPSCs free of exogenous reprogramming factors. Although the use of nonintegrating methods to generate iPSCs is rapidly becoming a standard approach, methods based on site-specific integration of reprogramming factor genes as reported here hold the potential for efficient generation of genetically amenable iPSCs suitable for future gene therapy applications.

SUBMITTER: Phang RZ 

PROVIDER: S-EPMC3841088 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells.

Phang Rui-Zhe RZ   Tay Felix Chang FC   Goh Sal-Lee SL   Lau Cia-Hin CH   Zhu Haibao H   Tan Wee-Kiat WK   Liang Qingle Q   Chen Can C   Du Shouhui S   Li Zhendong Z   Tay Johan Chin-Kang JC   Wu Chunxiao C   Zeng Jieming J   Fan Weimin W   Toh Han Chong HC   Wang Shu S  

Stem cells translational medicine 20131028 12


Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblas  ...[more]

Similar Datasets

| S-EPMC4424344 | biostudies-literature
| S-EPMC3983605 | biostudies-literature
2012-07-19 | E-GEOD-39497 | biostudies-arrayexpress
| S-EPMC4076977 | biostudies-literature
| S-EPMC3001086 | biostudies-literature
2012-07-20 | GSE39497 | GEO
| S-EPMC3555098 | biostudies-literature
| S-EPMC4104000 | biostudies-literature
| S-EPMC3098635 | biostudies-literature
| S-EPMC3110833 | biostudies-literature