Project description:Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC) differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV), MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05), and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc) after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the efficiency of in vitro embryo culture as well as a theoretical basis for further studying the regulatory mechanisms involved in early embryonic development.
Project description:To further our understanding of the complexity and genetic heterogeneity of rare diseases, it has become essential to shed light on how combinations of variants in different genes are responsible for a disease phenotype. With the appearance of a resource on digenic diseases, it has become possible to evaluate how digenic combinations differ in terms of the phenotypes they produce. All instances in this resource were assigned to two classes of digenic effects, annotated as true digenic and composite classes. Whereas in the true digenic class variants in both genes are required for developing the disease, in the composite class, a variant in one gene is sufficient to produce the phenotype, but an additional variant in a second gene impacts the disease phenotype or alters the age of onset. We show that a combination of variant, gene and higher-level features can differentiate between these two classes with high accuracy. Moreover, we show via the analysis of three digenic disorders that a digenic effect decision profile, extracted from the predictive model, motivates why an instance was assigned to either of the two classes. Together, our results show that digenic disease data generates novel insights, providing a glimpse into the oligogenic realm.
Project description:Objectives: During human in vitro fertilisation (IVF) treatments, embryologists attempt to select the most viable embryos for embryo transfer (ET). Previously, embryos were evaluated based on light microscopic morphological parameters. However, this is currently accomplished by morphokinetic analysis of time-lapse recordings. This technique provides us the opportunity to observe cytoplasmic strings at the blastocyst stage. The aim of this work was to examine the relationship between the presence of cytoplasmic strings (CS) and the embryo viability in human in vitro fertilised embryos. Study design: Herein, we present an evaluation of the morphokinetic data on the development of embryos obtained during IVF treatments performed at the Division of Assisted Reproduction between December 2020 and March 2021. The dynamics of embryo development, embryo morphology, and morphokinetic scores generated by a time-lapse system were compared between the presence of cytoplasmic strings (CS+) and their absence (CS-) at the blastocyst stage. Results: The development of 208 embryos from 78 patients was examined. Moreover, 81.2% of the embryos had CS in the blastocyst stage; 77% of CS existed in embryos created by conventional IVF, while 86% of CS existed in embryos fertilised by intracytoplasmic sperm injection (ICSI) (p = 0.08). A greater number of CS+ embryos developed into a higher quality blastocyst (52.1% vs. 20.5%, p = 0.02). The morphokinetic score values characterising the development of embryos, such as Known Implantation Data Score (KIDScore) and Intelligent Data Analysis (iDAScore), were higher in CS+ groups (KID: 6.1 ± 2.1 vs. 4.7 ± 2.07; iDA: 8.0 ± 1.9 vs. 6.8 ± 2.3, p < 0.01). The dynamics of the early embryo development were similar between the two groups; however, CS+ embryos reached the blastocyst stage significantly earlier (tB: 103.9 h vs. tB: 107.6 h; p = 0.001). Conclusion: Based on our results, the number of embryos with cytoplasmic strings was higher than that without cytoplasmic strings, and its presence is not related to the fertilisation method. These embryos reached the blastocyst stage earlier, and their morphokinetic (KIDScore and iDAScore) parameters were better. All these results suggest that the presence of CS indicates higher embryo viability. The examination of this feature may help us make decisions about the embryos with higher implantation potential.
Project description:Alternative splicing is known to increase the complexity of mammalian transcriptomes since nearly all mammalian genes express multiple pre-mRNA isoforms. However, our knowledge of the extent and function of alternative splicing in early embryonic development is based mainly on a few isolated examples. High throughput technologies now allow us to study genome-wide alternative splicing during mouse development.A genome-wide analysis of alternative isoform expression in embryonic day 8.5, 9.5 and 11.5 mouse embryos and placenta was carried out using a splicing-sensitive exon microarray. We show that alternative splicing and isoform expression is frequent across developmental stages and tissues, and is comparable in frequency to the variation in whole-transcript expression. The genes that are alternatively spliced across our samples are disproportionately involved in important developmental processes. Finally, we find that a number of RNA binding proteins, including putative splicing factors, are differentially expressed and spliced across our samples suggesting that such proteins may be involved in regulating tissue and temporal variation in isoform expression. Using an example of a well characterized splicing factor, Fox2, we demonstrate that changes in Fox2 expression levels can be used to predict changes in inclusion levels of alternative exons that are flanked by Fox2 binding sites.We propose that alternative splicing is an important developmental regulatory mechanism. We further propose that gene expression should routinely be monitored at both the whole transcript and the isoform level in developmental studies.
Project description:CCN2 is a critical matricellular protein that is expressed in several cells with major implications in physiology and different pathologies. However, the transcriptional regulation of this gene remains obscure. We used the Encyclopaedia of DNA Elements browser (ENCODE) to visualise the region spanning from 300 kb upstream to the CCN2 start site in silico in order to identify enhancer regions that regulate transcription of this gene. Selection was based on three criteria associated with enhancer regions: 1) H3K4me1 and H3K27ac histone modifications, 2) DNase I hypersensitivity of chromatin and 3) inter-species conservation. Reporter constructs were created with sequences spanning each of the regions of interest placed upstream of an Hsp68 silent proximal promoter sequence in order to drive the expression of β-galactosidase transgene. Each of these constructs was subsequently used to create transgenic mice in which reporter gene production was assessed at the E15.5 developmental stage. Four functional enhancers were identified, with each driving distinct, tissue-specific patterns of transgene expression. An enhancer located -100 kb from the CCN2 transcription start site facilitated expression within vascular tissue. An enhancer -135 kb upstream of CCN2 drove expression within the articular chondrocytes of synovial joints. The other two enhancers, located at -198 kb and -229 kb, mediated transgene expression within dermal fibroblasts, however the most prevalent activity was found within hypertrophic chondrocytes and periosteal tissue, respectively. These findings suggest that the global expression of CCN2 during development results from the activity of several tissue-specific enhancer regions in addition to proximal regulatory elements that have previously been demonstrated to drive transcription of the gene during development.
Project description:Chromosomes are not randomly packed and positioned into the nucleus but folded in higher-order chromatin structures with defined functions. However, the genome of a fertilized embryo undergoes a dramatic epigenetic reprogramming characterized by extensive chromatin relaxation and the lack of a defined three-dimensional structure. This reprogramming is followed by a slow genome refolding that gradually strengthens the chromatin architecture during preimplantation development. Interestingly, genome refolding during early development coincides with a progressive loss of developmental potential suggesting a link between chromatin organization and cell plasticity. In agreement, loss of chromatin architecture upon depletion of the insulator transcription factor CTCF in embryonic stem cells led to the upregulation of the transcriptional program found in totipotent cells of the embryo, those with the highest developmental potential. This essay will discuss the impact of genome folding in controlling the expression of transcriptional programs involved in early development and their plastic-associated features.
Project description:Transcription factors have long been recognised as powerful regulators of mammalian development yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches during the early stages of haematopoietic development to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that key regulators are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both Scl/Tal1 and Runx1 in fully specified blood cells, and initiation of CD41 expression in E7.5 embryos is severely compromised in the absence of Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulators is likely to represent a design principle widely applicable to the transcriptional control of mammalian development.
Project description:The octamer motif is a common cis-acting regulatory element that functions in the transcriptional control regions of diverse genes and in viral origins of replication. The ability of a consensus octamer motif to stimulate transcription of a histone H2B promoter in frog oocytes suggests that oocytes contain a transcriptionally active octamer-binding protein(s). We show here that frog oocytes and developing embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer binding-proteins were isolated from Xenopus cDNA libraries by virtue of their homology with the DNA binding (POU) domain of Oct-1. The predicted POU domains of these proteins were most highly related to mammalian Oct-3 (also termed Oct-4), a germ line-specific gene required for mouse early development. Transcripts from these amphibian POU-domain genes were most abundant during early embryogenesis and absent from most adult somatic tissues. One of the genes, termed Oct-60, was primarily expressed as a maternal transcript localized in the animal hemisphere in mature oocytes. The protein encoded by this gene was present in oocytes and early embryos until the gastrula stage of development. Transcripts from a second POU-domain gene, Oct-25, were present at low levels in oocytes and early embryos and were dramatically upregulated during early gastrulation. In contrast to the Oct-60 mRNA, translation of Oct-25 mRNA appeared to be developmentally regulated, since the corresponding protein was detected in embryos during gastrulation but not in oocytes or rapidly cleaving embryos. Transcripts from the third POU protein gene, Oct-91, were induced after the midblastula transition and reached their highest levels of accumulation during late gastrulation. The expression of all three genes decreased during late gastrulation and early neurulation. By analogy with other members of the POU-domain gene family, the products of these genes may play critical roles in the determination of cell fate and the regulation of cell proliferation.
Project description:Survival and cell death signals are crucial for mammalian embryo preimplantation development. However, the knowledge on the molecular mechanisms underlying their regulation is still limited. Mouse studies are widely used to understand preimplantation embryo development, but extrapolation of these results to humans is questionable. Therefore, we wanted to analyse the global expression profiles during early mouse and human development with a special focus on genes involved in the regulation of the apoptotic and survival pathways. We used DNA microarray technology to analyse the global gene expression profiles of preimplantation human and mouse embryos (metaphase II oocytes, embryos at the embryonic genome activation stage, and blastocysts). Components of the major apoptotic and survival signalling pathways were expressed during early human and mouse embryonic development; however, most expression profiles were species-specific. Particularly, the expression of genes encoding components and regulators of the apoptotic machinery were extremely stable in mouse embryos at all analysed stages, while it was more stage-specific in human embryos. CASP3, CASP9, and AIF were the only apoptosis-related genes expressed in both species and at all studied stages. Moreover, numerous transcripts related to the apoptotic and survival pathway were reported for the first time such as CASP6 and IL1RAPL1 that were specific to MII oocytes; CASP2, ENDOG, and GFER to blastocysts in human. These findings open new perspectives for the characterization and understanding of the survival and apoptotic signalling pathways that control early human and mouse embryonic development.
Project description:Positional information on the shoulder girdle (the clavicle and scapula) is important for a better understanding of the function of the upper limb in the locomotive system as well as its associated disease pathogenesis. However, such data are limited except for information on the axial position of the scapula. Here, we describe a three-dimensional reconstruction of the shoulder girdle including the clavicle and scapula, and its relationship to different landmarks in the body. Thirty-six human fetal specimens (crown-rump length range: 7.6-225 mm) from the Kyoto Collection were used for this study. The morphogenesis and three-dimensional position of the shoulder girdle were analyzed with phase-contrast X-ray computed tomography and magnetic resonance imaging. We first detected the scapula body along with the coracoid and humeral head at Carnegie stage 18; however, the connection between the body and coracoid was not confirmed at this stage. During development, all landmarks on the shoulder girdle remained at the same axial position except for the inferior angle, which implies that the scapula enlarged in the caudal direction and reached the adult axial position in the fetal period. The scapula body was rotated internally and in the upward direction at the initiation of morphogenesis, but in the fetal period the scapula body was different than that in the adult position. The shoulder girdle was located at the ventral side of the vertebrae at the time of initial morphogenesis, but changed its position to the lateral side of the vertebrae in the late embryonic and fetal periods. Such a unique position of the shoulder girdle may contribute to the stage-specific posture of the upper limb. Adequate internal and upward rotation of the scapula could help in reducing the shoulder width, thereby facilitating childbirth. The data presented in this study can be used as normal morphometric references for shoulder girdle evaluations in the embryonic and fetal periods.