Unknown

Dataset Information

0

Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2+ cofactor.


ABSTRACT: Apurinic/apyrimidinic endonuclease 1 (APE1) mediates the repair of abasic sites and other DNA lesions and is essential for base-excision repair and strand-break repair pathways. APE1 hydrolyzes the phosphodiester bond at abasic sites, producing 5'-deoxyribose phosphate and the 3'-OH primer needed for repair synthesis. It also has additional repair activities, including the removal of 3'-blocking groups. APE1 is a powerful enzyme that absolutely requires Mg2+, but the stoichiometry and catalytic function of the divalent cation remain unresolved for APE1 and for other enzymes in the DNase I superfamily. Previously reported structures of DNA-free APE1 contained either Sm3+ or Pb2+ in the active site. However, these are poor surrogates for Mg2+ because Sm3+ is not a cofactor and Pb2+ inhibits APE1, and their coordination geometry is expected to differ from that of Mg2+. A crystal structure of human APE1 was solved at 1.92?Å resolution with a single Mg2+ ion in the active site. The structure reveals ideal octahedral coordination of Mg2+ via two carboxylate groups and four water molecules. One residue that coordinates Mg2+ directly and two that bind inner-sphere water molecules are strictly conserved in the DNase I superfamily. This structure, together with a recent structure of the enzyme-product complex, inform on the stoichiometry and the role of Mg2+ in APE1-catalyzed reactions.

SUBMITTER: Manvilla BA 

PROVIDER: S-EPMC3852660 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2+ cofactor.

Manvilla Brittney A BA   Pozharski Edwin E   Toth Eric A EA   Drohat Alexander C AC  

Acta crystallographica. Section D, Biological crystallography 20131119 Pt 12


Apurinic/apyrimidinic endonuclease 1 (APE1) mediates the repair of abasic sites and other DNA lesions and is essential for base-excision repair and strand-break repair pathways. APE1 hydrolyzes the phosphodiester bond at abasic sites, producing 5'-deoxyribose phosphate and the 3'-OH primer needed for repair synthesis. It also has additional repair activities, including the removal of 3'-blocking groups. APE1 is a powerful enzyme that absolutely requires Mg2+, but the stoichiometry and catalytic  ...[more]

Similar Datasets

| S-EPMC3901322 | biostudies-literature
| S-EPMC2862823 | biostudies-literature
| S-EPMC3448856 | biostudies-literature
| S-EPMC3624277 | biostudies-literature
| S-EPMC6442068 | biostudies-literature
| S-EPMC2720577 | biostudies-literature
| S-EPMC2685009 | biostudies-literature
| S-EPMC5379662 | biostudies-literature
| S-EPMC3816401 | biostudies-literature
| S-EPMC3706204 | biostudies-literature