Radar chart array analysis to visualize effects of formulation variables on IgG1 particle formation as measured by multiple analytical techniques.
Ontology highlight
ABSTRACT: This study presents a novel method to visualize protein aggregate and particle formation data to rapidly evaluate the effect of solution and stress conditions on the physical stability of an immunoglobulin G (IgG) 1 monoclonal antibody (mAb). Radar chart arrays were designed so that hundreds of microflow digital imaging (MFI) solution measurements, evaluating different mAb formulations under varying stresses, could be presented in a single figure with minimal loss of data resolution. These MFI radar charts show measured changes in subvisible particle number, size, and morphology distribution as a change in the shape of polygons. Radar charts were also created to visualize mAb aggregate and particle formation across a wide size range by combining data sets from size-exclusion chromatography, Archimedes resonant mass measurements, and MFI. We found that the environmental/mechanical stress condition (e.g., heat vs. agitation) was the most important factor in influencing the particle size and morphology distribution with this IgG1 mAb. Additionally, the presence of NaCl exhibited a pH and stress-dependent behavior resulting in promotion or inhibition mAb particle formation. This data visualization technique provides a comprehensive analysis of the aggregation tendencies of this IgG1 mAb in different formulations with varying stresses as measured by different analytical techniques.
SUBMITTER: Kalonia C
PROVIDER: S-EPMC3856888 | biostudies-literature | 2013 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA