ABSTRACT: Mating duration is a reproductive behaviour that can impact fertilization efficiency and offspring number. Previous studies of factors influencing the evolution of mating duration have focused on the potential role of internal sperm competition as an underlying source of selection; most of these studies have been on invertebrates. For vertebrates with external fertilization, such as fishes and frogs, the sources of selection acting on mating duration remain largely unknown due, in part, to the difficulty of observing complete mating behaviours in natural conditions. In this field study, we monitored breeding activity in a population of the territorial olive frog, Rana adenopleura, to identify factors that affect the duration of amplexus. Compared with most other frogs, amplexus was short, lasting less than 11 min on average, which included about 8 min of pre-oviposition activity followed by 3 min of oviposition. We evaluated the relationship between amplexus duration and seven variables: male body size, male condition, operational sex ratio (OSR), population size, clutch size, territory size, and the coverage of submerged vegetation in a male's territory. We also investigated the influence of these same variables, along with amplexus duration, on fertilization rate. Amplexus duration was positively related with clutch size and the degree of male-bias in the nightly OSR. Fertilization rate was directly related to male body size and inversely related to amplexus duration. Agonistic interactions between males in amplexus and intruding, unpaired males were frequent. These interactions often resulted in mating failure, prolonged amplexus duration, and reduced fertilization rates. Together, the pattern of our findings indicates short amplexus duration in this species may be an adaptive reproductive strategy whereby males attempt to reduce the risks of mating and fertilization failures and territory loss resulting from male-male competition.