Unknown

Dataset Information

0

Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production.


ABSTRACT: Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors.

SUBMITTER: Rioseras B 

PROVIDER: S-EPMC3858829 | biostudies-literature | 2014 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production.

Rioseras Beatriz B   López-García María Teresa MT   Yagüe Paula P   Sánchez Jesús J   Manteca Angel A  

Bioresource technology 20131030


Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed  ...[more]

Similar Datasets

| S-EPMC3818858 | biostudies-literature
| S-EPMC6137418 | biostudies-literature
| S-EPMC3694883 | biostudies-literature
| S-EPMC6135851 | biostudies-other
| S-EPMC9239190 | biostudies-literature
| S-EPMC4070896 | biostudies-literature
| S-EPMC3008532 | biostudies-literature
| S-EPMC6585502 | biostudies-literature
| S-EPMC2446789 | biostudies-literature
| S-EPMC3482498 | biostudies-literature