Unknown

Dataset Information

0

Doubly-robust estimators of treatment-specific survival distributions in observational studies with stratified sampling.


ABSTRACT: Observational studies are frequently conducted to compare the effects of two treatments on survival. For such studies we must be concerned about confounding; that is, there are covariates that affect both the treatment assignment and the survival distribution. With confounding the usual treatment-specific Kaplan-Meier estimator might be a biased estimator of the underlying treatment-specific survival distribution. This article has two aims. In the first aim we use semiparametric theory to derive a doubly robust estimator of the treatment-specific survival distribution in cases where it is believed that all the potential confounders are captured. In cases where not all potential confounders have been captured one may conduct a substudy using a stratified sampling scheme to capture additional covariates that may account for confounding. The second aim is to derive a doubly-robust estimator for the treatment-specific survival distributions and its variance estimator with such a stratified sampling scheme. Simulation studies are conducted to show consistency and double robustness. These estimators are then applied to the data from the ASCERT study that motivated this research.

SUBMITTER: Bai X 

PROVIDER: S-EPMC3865227 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Doubly-robust estimators of treatment-specific survival distributions in observational studies with stratified sampling.

Bai Xiaofei X   Tsiatis Anastasios A AA   O'Brien Sean M SM  

Biometrics 20131011 4


Observational studies are frequently conducted to compare the effects of two treatments on survival. For such studies we must be concerned about confounding; that is, there are covariates that affect both the treatment assignment and the survival distribution. With confounding the usual treatment-specific Kaplan-Meier estimator might be a biased estimator of the underlying treatment-specific survival distribution. This article has two aims. In the first aim we use semiparametric theory to derive  ...[more]

Similar Datasets

| S-EPMC7286558 | biostudies-literature
| S-EPMC2648900 | biostudies-other
| S-EPMC3747813 | biostudies-literature
| S-EPMC9401091 | biostudies-literature
| S-EPMC5737934 | biostudies-literature
| S-EPMC3070495 | biostudies-literature
| S-EPMC6788711 | biostudies-literature
| S-EPMC2830581 | biostudies-literature
| S-EPMC4263224 | biostudies-literature
| S-EPMC3951147 | biostudies-literature