Ontology highlight
ABSTRACT: Background
Maize is an increasingly important food crop in southeast Asia. The elucidation of its genetic architecture, accomplished by exploring quantitative trait loci and useful alleles in various lines across numerous breeding programs, is therefore of great interest. The present study aimed to characterize subtropical maize lines using high-quality SNPs distributed throughout the genome.Results
We genotyped a panel of 240 subtropical elite maize inbred lines and carried out linkage disequilibrium, genetic diversity, population structure, and principal component analyses on the generated SNP data. The mean SNP distance across the genome was 70 Kb. The genome had both high and low linkage disequilibrium (LD) regions; the latter were dominant in areas near the gene-rich telomeric portions where recombination is frequent. A total of 252 haplotype blocks, ranging in size from 1 to 15.8 Mb, were identified. Slow LD decay (200-300 Kb) at r(2) ? 0.1 across all chromosomes explained the selection of favorable traits around low LD regions in different breeding programs. The association mapping panel was characterized by strong population substructure. Genotypes were grouped into three distinct clusters with a mean genetic dissimilarity coefficient of 0.36.Conclusions
The genotyped panel of subtropical maize lines characterized in this study should be useful for association mapping of agronomically important genes. The dissimilarity uncovered among genotypes provides an opportunity to exploit the heterotic potential of subtropical elite maize breeding lines.
SUBMITTER: Thirunavukkarasu N
PROVIDER: S-EPMC3867671 | biostudies-literature | 2013 Dec
REPOSITORIES: biostudies-literature
Thirunavukkarasu Nepolean N Hossain Firoz F Shiriga Kaliyugam K Mittal Swati S Arora Kanika K Rathore Abhishek A Mohan Sweta S Shah Trushar T Sharma Rinku R Namratha Pottekatt Mohanlal PM Mithra Amitha S V AS Mohapatra Trilochan T Gupta Hari Shankar HS
BMC genomics 20131213
<h4>Background</h4>Maize is an increasingly important food crop in southeast Asia. The elucidation of its genetic architecture, accomplished by exploring quantitative trait loci and useful alleles in various lines across numerous breeding programs, is therefore of great interest. The present study aimed to characterize subtropical maize lines using high-quality SNPs distributed throughout the genome.<h4>Results</h4>We genotyped a panel of 240 subtropical elite maize inbred lines and carried out ...[more]