Absence of glucocorticoids augments stress-induced Mkp1 mRNA expression within the hypothalamic-pituitary-adrenal axis.
Ontology highlight
ABSTRACT: Stress-induced activation of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons trigger CRH release and synthesis. Recent findings have suggested that this process depends on the intracellular activation (phosphorylation) of ERK1/2 within CRH neurons. We have recently shown that the presence of glucocorticoids constrains stress-stimulated phosphorylation of PVN ERK1/2. In some peripheral cell types, dephosphorylation of ERK has been shown to be promoted by direct glucocorticoid upregulation of the MAP kinase phosphatase 1 (Mkp1) gene. In this study, we tested the hypothesis that glucocorticoids regulate Mkp1 mRNA expression in the neural forebrain (medial prefrontal cortex, mPFC, and PVN) and endocrine tissue (anterior pituitary) by subjecting young adult male Sprague-Dawley rats to various glucocorticoid manipulations with or without acute psychological stress (restraint). Restraint led to a rapid increase in Mkp1 mRNA within the mPFC, PVN, and anterior pituitary, and this increase did not require glucocorticoid activity. In contrast to glucocorticoid upregulation of Mkp1 gene expression in the peripheral tissues, we found that the absence of glucocorticoids (as a result of adrenalectomy) augmented basal mPFC and stress-induced PVN and anterior pituitary Mkp1 gene expression. Taken together, this study indicates that the presence of glucocorticoids may constrain Mkp1 gene expression in the neural forebrain and endocrine tissues. This possible constraint may be an indirect consequence of the inhibitory influence of glucocorticoids on stress-induced activation of ERK1/2, a known upstream positive regulator of Mkp1 gene transcription.
SUBMITTER: Osterlund CD
PROVIDER: S-EPMC3869093 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA