Unknown

Dataset Information

0

Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate.


ABSTRACT: Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or monounsaturated C(n) fatty aldehydes to formate and the corresponding C(n-1) alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 cosubstrate to the oxidation state of water and incorporates one O-atom from O2 into the formate coproduct. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2(III/III) complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2(III/III) center with resolved subsites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t(1/2) ~ 400 s at 5 °C) to produce a very modest yield of formate (<0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazinium methylsulfate ((MeO)PMS) to yield product, albeit at only ~50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or heterodinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2(III/III)-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1-C2 radical fragmentation and formation of the alk(a/e)ne and formate products.

SUBMITTER: Pandelia ME 

PROVIDER: S-EPMC3869994 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate.

Pandelia Maria E ME   Li Ning N   Nørgaard Hanne H   Warui Douglas M DM   Rajakovich Lauren J LJ   Chang Wei-Chen WC   Booker Squire J SJ   Krebs Carsten C   Bollinger J Martin JM  

Journal of the American Chemical Society 20131009 42


Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or monounsaturated C(n) fatty aldehydes to formate and the corresponding C(n-1) alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 cosubstrate to the oxidation state of water and incorporates one O-atom from O2 int  ...[more]

Similar Datasets

| S-EPMC3944378 | biostudies-literature
| S-EPMC4502973 | biostudies-literature
| S-EPMC5007808 | biostudies-literature
| S-EPMC4722334 | biostudies-literature
| S-EPMC4151702 | biostudies-literature
| S-EPMC4383598 | biostudies-literature
| S-EPMC6469105 | biostudies-literature
| S-EPMC5568637 | biostudies-literature
| S-EPMC4245163 | biostudies-literature
| S-EPMC5356278 | biostudies-literature