Unknown

Dataset Information

0

Predictive biomechanical analysis of ascending aortic aneurysm rupture potential.


ABSTRACT: Aortic aneurysm is a leading cause of death in adults, often taking lives without any premonitory signs or symptoms. Adverse clinical outcomes of aortic aneurysm are preventable by elective surgical repair; however, identifying at-risk individuals is difficult. The objective of this study was to perform a predictive biomechanical analysis of ascending aortic aneurysm (AsAA) tissue to assess rupture risk on a patient-specific level. AsAA tissues, obtained intra-operatively from 50 patients, were subjected to biaxial mechanical and uniaxial failure tests to obtain their passive elastic mechanical properties. A novel analytical method was developed to predict the AsAA pressure-diameter response as well as the aortic wall yield and failure responses. Our results indicated that the mean predicted AsAA diameter at rupture was 5.6 ± 0.7 cm, and the associated blood pressure to induce rupture was 579.4 ± 214.8 mmHg. Statistical analysis showed significant positive correlation between aneurysm tissue compliance and predicted risk of rupture, where patients with a pressure-strain modulus ?100 kPa may be nearly twice as likely to experience rupture than patients with more compliant aortic tissue. The mechanical analysis of pre-dissection patient tissue properties established in this study could predict the "future" onset of yielding and rupture in AsAA patients. The analysis results implicate decreased tissue compliance as a risk factor for AsAA rupture. The presented methods may serve as a basis for the development of a pre-operative planning tool for AsAA evaluation, a tool currently unavailable.

SUBMITTER: Martin C 

PROVIDER: S-EPMC3872822 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predictive biomechanical analysis of ascending aortic aneurysm rupture potential.

Martin Caitlin C   Sun Wei W   Pham Thuy T   Elefteriades John J  

Acta biomaterialia 20130812 12


Aortic aneurysm is a leading cause of death in adults, often taking lives without any premonitory signs or symptoms. Adverse clinical outcomes of aortic aneurysm are preventable by elective surgical repair; however, identifying at-risk individuals is difficult. The objective of this study was to perform a predictive biomechanical analysis of ascending aortic aneurysm (AsAA) tissue to assess rupture risk on a patient-specific level. AsAA tissues, obtained intra-operatively from 50 patients, were  ...[more]

Similar Datasets

| S-EPMC9196298 | biostudies-literature
| S-EPMC4662083 | biostudies-literature
| S-EPMC6704387 | biostudies-literature
| S-EPMC8751931 | biostudies-literature
| S-EPMC6064909 | biostudies-literature
| S-EPMC5675455 | biostudies-literature
| S-EPMC7141111 | biostudies-literature
| S-EPMC9731372 | biostudies-literature
| S-EPMC6324275 | biostudies-literature
| S-EPMC6013884 | biostudies-literature