Unknown

Dataset Information

0

Introduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration.


ABSTRACT: The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-independent Dehydration Responsive Element Binding (DREB) gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM) soybean lines containing 2-17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193) were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.

SUBMITTER: Engels C 

PROVIDER: S-EPMC3873188 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Introduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration.

Engels Cibelle C   Fuganti-Pagliarini Renata R   Marin Silvana Regina Rockenbach SR   Marcelino-Guimarães Francismar Corrêa FC   Oliveira Maria Cristina Neves MC   Kanamori Norihito N   Mizoi Junya J   Nakashima Kazuo K   Yamaguchi-Shinozaki Kazuko K   Nepomuceno Alexandre Lima AL  

Genetics and molecular biology 20131108 4


The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-independent Dehydration Responsive Element Binding (DREB) gene family has been used to obtain plants with increased tolerance to abiotic stresses. In th  ...[more]

Similar Datasets

| S-EPMC6018531 | biostudies-literature
| S-EPMC4161901 | biostudies-literature
2020-05-09 | GSE150157 | GEO
2010-09-06 | GSE22227 | GEO
| S-EPMC7781836 | biostudies-literature
| S-EPMC5617144 | biostudies-literature
| S-EPMC5733048 | biostudies-literature
| S-EPMC4312333 | biostudies-literature
| S-EPMC4226900 | biostudies-literature
| S-EPMC8020938 | biostudies-literature