Unknown

Dataset Information

0

Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients.


ABSTRACT: Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide variations and insertions/deletions in exomes of CTCs. These mutations provided information needed for individualized therapy, such as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar CNV patterns in their CTCs. Even more interestingly, patients of small-cell lung cancer have CNV patterns distinctly different from those of ADC patients. Our finding suggests that CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics.

SUBMITTER: Ni X 

PROVIDER: S-EPMC3876226 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients.

Ni Xiaohui X   Zhuo Minglei M   Su Zhe Z   Duan Jianchun J   Gao Yan Y   Wang Zhijie Z   Zong Chenghang C   Bai Hua H   Chapman Alec R AR   Zhao Jun J   Xu Liya L   An Tongtong T   Ma Qi Q   Wang Yuyan Y   Wu Meina M   Sun Yu Y   Wang Shuhang S   Li Zhenxiang Z   Yang Xiaodan X   Yong Jun J   Su Xiao-Dong XD   Lu Youyong Y   Bai Fan F   Xie X Sunney XS   Wang Jie J  

Proceedings of the National Academy of Sciences of the United States of America 20131209 52


Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide varia  ...[more]

Similar Datasets

| S-EPMC7331695 | biostudies-literature
| S-EPMC3245619 | biostudies-literature
| S-EPMC5538548 | biostudies-literature
| S-EPMC8361159 | biostudies-literature
| S-EPMC8143372 | biostudies-literature
| S-EPMC3399270 | biostudies-literature
| S-EPMC2600609 | biostudies-literature
| S-EPMC7565733 | biostudies-literature
| S-EPMC6108428 | biostudies-literature
| S-EPMC7388446 | biostudies-literature