Project description:Cavitands can be smoothly derivatized by CuAAC chemistry to incorporate ligand species at the upper rim. These species can coordinate metal species in a number of different conformations, leading to self-assembly. The metal-coordination confers water solubility on the cavitands, and the iron-bound species are capable of catalytic C-H oxidations of fluorene under mild conditions.
Project description:Two synthetic protocols for the introduction of fluorine atoms into resorcinarene-based cavitands, at the lower and upper rim, respectively, are reported. Cavitand 1, bearing four fluorocarbon tails, and cavitand 2, which presents a fluorine atom on the para position of a diester phosphonate phenyl substituent, were synthesized and their complexation abilities toward the model guest sarcosine methyl ester hydrochloride were evaluated via NMR titration experiments. The effect of complexation on the 19F NMR resonance of the probe is evident only in the case of cavitand 2, where the inset of the cation-dipole and H-bonding interactions between the P=O bridges and the guest is reflected in a sizable downfield shift of the fluorine probe.
Project description:pMMO (particulate methane mono-oxygenase) is an integral membrane metalloenzyme that catalyses the oxidation of methane to methanol. The pMMO metal active site has not been identified, precluding detailed investigation of the reaction mechanism. Models for the metal centres proposed by various research groups have evolved as crystallographic and spectroscopic data have become available. The present review traces the evolution of these active-site models before and after the 2005 Methylococcus capsulatus (Bath) pMMO crystal structure determination.
Project description:Deep cavitands having three fixed walls and one mobile wall were prepared. The longer wall, built from a quinoxaline spacer, showed enhanced NMR spectra of guests, but the shorter wall based on a benzene spacer showed tighter binding and slower exchange of guests.
Project description:We describe here the effects of metal complexation on the molecular recognition behavior of cavitands with quinoxaline walls. The nitrogen atoms of the quinoxalines are near the upper rim of the vase-like shape and treatment with Pd(II) gave 2:1 metal:cavitand derivatives. Characterization by 1H, 13C NMR spectroscopy, HR ESI-MS, and computations showed that the metals bridged adjacent quinoxaline panels and gave cavitands with C2v symmetry. Both water-soluble and organic-soluble versions were prepared and their host/guest complexes with alkanes, alcohols, acids, and diols (up to C12) were studied by 1H NMR spectroscopy. Analysis of the binding behavior indicated that the metals rigidified the walls of the receptive vase conformation and enhanced the binding of hydrophobic and even water-soluble guests, compared to related cavitands reported previously. The results demonstrated that the conformational dynamics of the cavitand were slowed by the coordination of Pd(II) and stabilized the host's complexes.
Project description:Deep cavitands, concave molecular containers, represent an important supramolecular host class that has been explored for a variety of applications ranging from sensing, switching, purification and adsorption to catalysis. A major limitation in the field has been the cavitand volume that is restricted by the size of the structural platform utilized (diameter approx. 7 Å). We here report the synthesis of a novel, unprecedentedly large structural platform, named acridane[4]arene (diameter approx. 14 Å), suitable for the construction of cavitands with volumes of up to 814 Å3 . These megalo-cavitands serve as size-selective hosts for fullerenes with mM to sub-μM binding affinity for C60 and C70 . Furthermore, the selective binding of fullerene C70 in the presence of C60 was demonstrated.
Project description:Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s(-1) at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.
Project description:A fluorescently labeled resorcinarene cavitand has been successfully embedded in DLPC lipid vesicles and imaged using confocal microscopy. The cavitand resides exclusively in the bilayer.
Project description:Despite dominating industrial processes, heterogeneous catalysts remain challenging to characterize and control. This is largely attributable to the diversity of potentially active sites at the catalyst-reactant interface and the complex behaviour that can arise from interactions between active sites. Surface-supported, single-site molecular catalysts aim to bring together benefits of both heterogeneous and homogeneous catalysts, offering easy separability while exploiting molecular design of reactivity, though the presence of a surface is likely to influence reaction mechanisms. Here, we use metal-organic coordination to build reactive Fe-terpyridine sites on the Ag(111) surface and study their activity towards CO and C2H4 gaseous reactants using low-temperature ultrahigh-vacuum scanning tunnelling microscopy, scanning tunnelling spectroscopy, and atomic force microscopy supported by density-functional theory models. Using a site-by-site approach at low temperature to visualize the reaction pathway, we find that reactants bond to the Fe-tpy active sites via surface-bound intermediates, and investigate the role of the substrate in understanding and designing single-site catalysts on metallic supports.
Project description:With an inwardly directed reactive center and a well-defined binding pocket, Au(I) functionalized resorcin[4]arene cavitands have been shown to catalyze molecular transformations. The reactivity profiles that emerge differ from other Au(I) catalysts. The added constraint of a binding pocket gives rise to the possibility that the substrates might have to fit into the resorcinarene pocket; our hypothesis is that substrates that match the available space have different reaction outcomes than those that do not. Herein we report on the intramolecular cyclization of alkyne-aromatic substrates with variable alkynes and aromatic composition. We see that scaffold size most drastically dictates reactivity, especially when the substrate's features are particularly designed. The results of these experiments add to the veritable goldmine of information about the selectivity in catalysis that cavitands offer.