Unknown

Dataset Information

0

Temperature sculpting in yoctoliter volumes.


ABSTRACT: The ability to perturb large ensembles of molecules from equilibrium led to major advances in understanding reaction mechanisms in chemistry and biology. Here, we demonstrate the ability to control, measure, and make use of rapid temperature changes in fluid volumes that are commensurate with the size of single molecules. The method is based on attaching gold nanoparticles to a single nanometer-scale pore formed by a protein ion channel. Visible laser light incident on the nanoparticles causes a rapid and large increase of the adjacent solution temperature, which is estimated from the change in the nanopore ionic conductance. The temperature shift also affects the ability of individual molecules to enter into and interact with the nanopore. This technique could significantly improve sensor systems and force measurements based on single nanopores, thereby enabling a method for single molecule thermodynamics and kinetics.

SUBMITTER: Reiner JE 

PROVIDER: S-EPMC3892765 | biostudies-literature | 2013 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temperature sculpting in yoctoliter volumes.

Reiner Joseph E JE   Robertson Joseph W F JW   Burden Daniel L DL   Burden Lisa K LK   Balijepalli Arvind A   Kasianowicz John J JJ  

Journal of the American Chemical Society 20130214 8


The ability to perturb large ensembles of molecules from equilibrium led to major advances in understanding reaction mechanisms in chemistry and biology. Here, we demonstrate the ability to control, measure, and make use of rapid temperature changes in fluid volumes that are commensurate with the size of single molecules. The method is based on attaching gold nanoparticles to a single nanometer-scale pore formed by a protein ion channel. Visible laser light incident on the nanoparticles causes a  ...[more]

Similar Datasets

| S-EPMC5746210 | biostudies-literature
| S-EPMC6377271 | biostudies-literature
| S-EPMC8270900 | biostudies-literature
| S-EPMC5503509 | biostudies-literature
| S-EPMC10538185 | biostudies-literature
| S-EPMC4105227 | biostudies-literature
| S-EPMC6327026 | biostudies-literature
| S-EPMC7909728 | biostudies-literature
| S-EPMC10769198 | biostudies-literature
| S-EPMC7183188 | biostudies-literature