Unknown

Dataset Information

0

Penam sulfones and ?-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition.


ABSTRACT: ?-Lactamases are the major reason ?-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, ?-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k(react) than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k(react) compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K?R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV ?-lactamases that possess the K234R substitution.

SUBMITTER: Rodkey EA 

PROVIDER: S-EPMC3894197 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition.

Rodkey Elizabeth A EA   Winkler Marisa L ML   Bethel Christopher R CR   Pagadala Sundar Ram Reddy SR   Buynak John D JD   Bonomo Robert A RA   van den Akker Focco F  

PloS one 20140116 1


β-Lactamases are the major reason β-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, β-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower  ...[more]

Similar Datasets

| S-EPMC7543660 | biostudies-literature
| S-EPMC6401700 | biostudies-literature
| S-EPMC6523877 | biostudies-other
| S-EPMC7400623 | biostudies-literature
| S-EPMC9326822 | biostudies-literature
| S-EPMC5500196 | biostudies-literature
| S-EPMC2662299 | biostudies-literature
| S-EPMC9329624 | biostudies-literature
| S-EPMC3295836 | biostudies-literature
| S-EPMC6391956 | biostudies-literature