Unknown

Dataset Information

0

Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.


ABSTRACT: The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation.To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes.Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.

SUBMITTER: Uosaki H 

PROVIDER: S-EPMC3898889 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.

Uosaki Hideki H   Magadum Ajit A   Seo Kinya K   Fukushima Hiroyuki H   Takeuchi Ayako A   Nakagawa Yasuaki Y   Moyes Kara White KW   Narazaki Genta G   Kuwahara Koichiro K   Laflamme Michael M   Matsuoka Satoshi S   Nakatsuji Norio N   Nakao Kazuwa K   Kwon Chulan C   Kass David A DA   Engel Felix B FB   Yamashita Jun K JK  

Circulation. Cardiovascular genetics 20131018 6


<h4>Background</h4>The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and  ...[more]

Similar Datasets

| S-EPMC5622562 | biostudies-literature
| S-EPMC3947409 | biostudies-literature
| S-EPMC7000736 | biostudies-literature
| S-EPMC6849481 | biostudies-literature
| S-EPMC6483088 | biostudies-literature
| S-EPMC5920079 | biostudies-literature
| S-EPMC3305812 | biostudies-literature
| S-EPMC6547019 | biostudies-literature
| S-EPMC5384572 | biostudies-literature
| S-EPMC9641990 | biostudies-literature