Unknown

Dataset Information

0

Frequency specificity of regional homogeneity in the resting-state human brain.


ABSTRACT: Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01-0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01-0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02-0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz). The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04-0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.

SUBMITTER: Song X 

PROVIDER: S-EPMC3900644 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Frequency specificity of regional homogeneity in the resting-state human brain.

Song Xiaopeng X   Zhang Yi Y   Liu Yijun Y  

PloS one 20140123 1


Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01-0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01-0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adop  ...[more]

Similar Datasets

| S-EPMC4052837 | biostudies-literature
| S-EPMC5974035 | biostudies-literature
| S-EPMC3711903 | biostudies-literature
| S-EPMC3873744 | biostudies-literature
| S-EPMC3590274 | biostudies-literature