Project description:BackgroundIn the United States, Tick-Borne Relapsing Fever (TBRF) in dogs is caused by the spirochete bacteria Borrelia turicatae and Borrelia hermsii, transmitted by Ornithodoros spp. ticks. The hallmark diagnostic feature of this infection is the visualization of numerous spirochetes during standard blood smear examination. Although the course of spirochetemia has not been fully characterized in dogs, in humans infected with TBRF the episodes of spirochetemia and fever are intermittent.ObjectivesTo describe TBRF in dogs by providing additional case reports and reviewing the disease in veterinary and human medicine.AnimalsFive cases of privately-owned dogs naturally infected with TBRF in Texas are reviewed.MethodsCase series and literature review.ResultsAll dogs were examined because of lethargy, inappetence, and pyrexia. Two dogs also had signs of neurologic disease. All dogs had thrombocytopenia and spirochetemia. All cases were administered tetracyclines orally. Platelet numbers improved and spirochetemia and pyrexia resolved in 4 out of 5 dogs, where follow-up information was available.Conclusion and clinical importanceTBRF is likely underdiagnosed in veterinary medicine. In areas endemic to Ornithodoros spp. ticks, TBRF should be considered in dogs with thrombocytopenia. Examination of standard blood smears can provide a rapid and specific diagnosis of TBRF when spirochetes are observed.
Project description:Tick-Borne Relapsing Fever (TBRF) is caused by spirochetes in the genus Borrelia. Very limited information exists on the incidence of this disease in humans and domestic dogs in the United States. The main objective of this study is to evaluate exposure of dogs to Borrelia turicatae, a causative agent of TBRF, in Texas. To this end, 878 canine serum samples were submitted to Texas A&M Veterinary Medical Diagnostic Laboratory from October 2011 to September 2012 for suspected tick-borne illnesses. The recombinant Borrelial antigen glycerophosphodiester phosphodiesterase (GlpQ) was expressed, purified, and used as a diagnostic antigen in both ELISA assays and Immunoblot analysis. Unfortunately, due to significant background reaction, the use of GlpQ as a diagnostic marker in the ELISA assay was not effective in discriminating dogs exposed to B. turicatae. Nevertheless, immunoblot assays showed that 17 out of 853 samples tested were considered to be seropositive, which constitutes 1.99% of all Texas samples tested in this study. The majority of positive samples were from central and southern Texas. Exposure to TBRF spirochetes may be seasonal, with 70.59% (12 out of 17) of the cases detected between June and December. In addition, 2 out of the 17 sero-reactive cases (11.76%) showed reactivity to both B. burgdorferi (causative agent of Lyme disease) and B. turicatae (a causative agent of TBRF). This is the first report of TBRF sero-prevalence in companion animals in an endemic area. Our findings further indicate that B. turicatae is maintained in domestic canids in Texas in regions where human disease also occurs, suggesting that domestic dogs could serve as sentinels for this disease.
Project description:Borrelia miyamotoi is a relapsing fever spirochete that shares the same vector as Lyme disease causing Borrelia. This epidemiological study of B. miyamotoi was conducted in rodent reservoirs, tick vectors and human populations simultaneously. A total of 640 rodents and 43 ticks were collected from Phop Phra district, Tak province, Thailand. The prevalence rate for all Borrelia species was 2.3% and for B. miyamotoi was 1.1% in the rodent population, while the prevalence rate was quite high in ticks collected from rodents with an infection rate of 14.5% (95% CI: 6.3-27.6%). Borrelia miyamotoi was detected in Ixodes granulatus collected from Mus caroli and Berylmys bowersi, and was also detected in several rodent species (Bandicota indica, Mus spp., and Leopoldamys sabanus) that live in a cultivated land, increasing the risk of human exposure. Phylogenetic analysis revealed that the B. miyamotoi isolates detected in rodents and I. granulatus ticks in this study were similar to isolates detected in European countries. Further investigation was conducted to determine the serological reactivity to B. miyamotoi in human samples received from Phop Phra hospital, Tak province and in rodents captured from Phop Phra district using an in-house, direct enzyme-linked immunosorbent assay (ELISA) assay with B. miyamotoi recombinant glycerophosphodiester-phosphodiesterase (rGlpQ) protein as coated antigen. The results showed that 17.9% (15/84) of human patients and 9.0% (41/456) of captured rodents had serological reactivity to B. miyamotoi rGlpQ protein in the study area. While a low level of IgG antibody titers (100-200) was observed in the majority of seroreactive samples, higher titers (400-1,600) were also detected in both humans and rodents. This study provides the first evidence of B. miyamotoi exposure in human and rodent populations in Thailand and the possible roles of local rodent species and Ixodes granulatus tick in its enzootic transmission cycle in nature.
Project description:Borrelia turicatae is a causative agent of tick-borne relapsing fever (TBRF) in the subtropics and tropics of the United States and Latin America. Historically, B. turicatae was thought to be maintained in enzootic cycles in rural areas. However, there is growing evidence that suggests the pathogen has established endemic foci in densely populated regions of Texas. With the growth of homelessness in the state and human activity in city parks, it was important to implement field collection efforts to identify areas where B. turicatae and its vector circulate. Between 2017 and 2020 we collected Ornithodoros turicata ticks in suburban and urban areas including public and private parks and recreational spaces. Ticks were fed on naïve mice and spirochetes were isolated from the blood. Multilocus sequence typing (MLST) was performed on eight newly obtained isolates and included previously reported sequences. The four chromosomal loci targeted for MLST were 16S ribosomal RNA (rrs), flagellin B (flaB), DNA gyrase B (gyrB), and the intergenic spacer (IGS). Given the complexity of Borrelia genomes, plasmid diversity was also evaluated. These studies indicate that the IGS locus segregates B. turicatae into four genomic types and plasmid diversity is extensive between isolates. Furthermore, B. turicatae and its vector have established endemic foci in parks and recreational areas in densely populated settings of Texas.
Project description:Tick borne relapsing fever (TBRF) is a zoonosis caused by various Borrelia species transmitted to humans by both soft-bodied and (more recently recognized) hard-bodied ticks. In recent years, molecular diagnostic techniques have allowed to extend our knowledge on the global epidemiological picture of this neglected disease. Nevertheless, due to the patchy occurrence of the disease and the lack of large clinical studies, the knowledge on several clinical aspects of the disease remains limited. In order to shed light on some of these aspects, we have systematically reviewed the literature on TBRF and summarized the existing data on epidemiology and clinical aspects of the disease. Publications were identified by using a predefined search strategy on electronic databases and a subsequent review of the reference lists of the obtained publications. All publications reporting patients with a confirmed diagnosis of TBRF published in English, French, Italian, German, and Hungarian were included. Maps showing the epidemiogeographic mosaic of the different TBRF Borrelia species were compiled and data on clinical aspects of TBRF were analysed. The epidemiogeographic mosaic of TBRF is complex and still continues to evolve. Ticks harbouring TBRF Borrelia have been reported worldwide, with the exception of Antarctica and Australia. Although only molecular diagnostic methods allow for species identification, microscopy remains the diagnostic gold standard in most clinical settings. The most suggestive symptom in TBRF is the eponymous relapsing fever (present in 100% of the cases). Thrombocytopenia is the most suggestive laboratory finding in TBRF. Neurological complications are frequent in TBRF. Treatment is with beta-lactams, tetracyclines or macrolids. The risk of Jarisch-Herxheimer reaction (JHR) appears to be lower in TBRF (19.3%) compared to louse-borne relapsing fever (LBRF) (55.8%). The overall case fatality rate of TBRF (6.5%) and LBRF (4-10.2%) appears to not differ. Unlike LBRF, where perinatal fatalities are primarily attributable to abortion, TBRF-related perinatal fatalities appear to primarily affect newborns.
Project description:The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome.
Project description:The primary cause of tick-borne relapsing fever in western North America is Borrelia hermsii, a rodent-associated spirochete transmitted by the fast-feeding soft tick Ornithodoros hermsi. We describe a patient who had an illness consistent with relapsing fever after exposure in the mountains near Los Angeles, California, USA. The patient's convalescent-phase serum was seropositive for B. hermsii but negative for several other vector-borne bacterial pathogens. Investigations at the exposure site showed the presence of O. hermsi ticks infected with B. hermsii and the presence of rodents that were seropositive for the spirochete. We determined that this tick-borne disease is endemic to the San Gabriel Mountains near the greater Los Angeles metropolitan area.
Project description:Despite increasing reports of tick-borne diseases in Africa, remarkably, reports of tick-borne relapsing fever (TBRF) in Nigeria are lacking. Ornithodoros savignyi from Nigeria have been reported with the relapsing fever Candidatus Borrelia kalaharica. Conversely, in Ethiopia, the agent of relapsing fever is the louse-borne relapsing fever (LBRF) spirochaete Borrelia recurrentis with no TBRF reported to occur. A total of 389 Ornithodoros ticks, Ethiopia (N = 312) and Nigeria (N = 77), were sampled, together with 350 cattle, and 200 goat sera were collected from Nigeria. Samples were screened for Borrelia spp. by RT-PCR. Reactive samples were confirmed, then sequenced using flagellin B, 16S rRNA, and 16S-23S intergenic spacer region. The prevalence of Borrelia spp. in livestock was 3.8% (21/550) and 14% (3/21) after final molecular confirmation. Of 312 ticks from Ethiopia, 3.5% (11/312) were positive for Borrelia, with 36% (4/11) by conventional PCR. Sequencing revealed that the borreliae in soft ticks was C. B. kalaharica, whilst that found in animals was Borrelia theileri. Soft ticks were confirmed by sequencing 7% (22/312) and 12% (9/77) of the Ethiopian and Nigerian ticks, respectively. Phylogenetic analysis revealed that these were Ornithodoros savignyi. This is the first evidence of C. B. kalaharica in Ethiopia and demonstrates the co-existence of TBRF in a country endemic to LBRF. Important, this might cause a diagnostic challenge given that LBRF is predominantly diagnosed by microscopy, which cannot differentiate these two spirochaetes. Furthermore, we report B. theileri in ruminants in Nigeria, which may also be of veterinary and economic importance.
Project description:BackgroundTick-borne relapsing fever (TBRF) is the most common vector-borne bacterial disease in humans in West Africa. It is frequently clinically confused with malaria. Our study aims to determine, on a micro-geographic scale, the conditions for the maintenance and spread of TBRF in the Niakhar district of Senegal.Methodology/principal findingsWe conducted clinical, entomological and animal reservoir investigations. Field surveys were carried out in order to investigate the presence of Ornithodoros sonrai vector ticks and to detect Borrelia spp. by qPCR using the 16S rRNA and glpQ genes, respectively. Micromammal trapping series were carried out inside homes and Borrelia infection was detected using brain tissue qPCR. Capillary blood samples from febrile patients were also tested for Borrelia using qPCR. More than 97% (40/41) of the villages surveyed were infested with O. sonrai ticks. The prevalence of Borrelia spp. infections in ticks was 13% (116/910), and over 73% (85/116) were positively confirmed as being Borrelia crocidurae. Borreliosis cases accounted for 12% (94/800) of episodes of fever and all age groups were infected, with children and young people between the ages of 8-14 and 22-28 being the most infected by the disease (16% and 18.4%). TBRF cases occurred in all seasons, with a peak in August. In two species of small rodents that were found to be infected (Arvicanthis niloticus, Mus musculus), the proportion of Borrelia infection was 17.5% (10/57), and the highest prevalence of infection (40.9%, 9/22) was observed in A. niloticus.Conclusion/significanceOur study indicates that TBRF is an endemic disease in the Niakhar district, where children and young people are the most infected. Arvicanthis niloticus and O. sonrai ticks are massively present and appear to be the main epidemiological reservoirs causing its extensive spread to humans.
Project description:Tick-borne relapsing fever (TBRF) is a potentially serious spirochetal infection caused by certain species of Borrelia and acquired through the bite of Ornithodoros ticks. In 2017, Austin Public Health, Austin, TX, identified five cases of febrile illness among employees who worked in caves. A cross-sectional serosurvey and interview were conducted for 44 employees at eight organizations that conduct cave-related work. Antibodies against TBRF-causing Borrelia were detected in the serum of five participants, four of whom reported recent illness. Seropositive employees entered significantly more caves (Median 25 [SD: 15] versus Median 4 [SD: 16], p = 0.04) than seronegative employees. Six caves were entered more frequently by seropositive employees posing a potentially high risk. Several of these caves were in public use areas and were opened for tours. Education of area healthcare providers about TBRF and prevention recommendations for cavers and the public are advised.