Unknown

Dataset Information

0

Role of the HIN domain in regulation of innate immune responses.


ABSTRACT: The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses.

SUBMITTER: Shaw N 

PROVIDER: S-EPMC3911281 | biostudies-literature | 2014 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of the HIN domain in regulation of innate immune responses.

Shaw Neil N   Liu Zhi-Jie ZJ  

Molecular and cellular biology 20131028 1


The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Al  ...[more]

Similar Datasets

| S-EPMC6579861 | biostudies-literature
| S-EPMC6005851 | biostudies-other
| S-EPMC5994174 | biostudies-literature
| S-EPMC4426399 | biostudies-literature
| S-EPMC7610359 | biostudies-literature
| S-EPMC1133779 | biostudies-literature
| S-EPMC4637233 | biostudies-other
| S-EPMC3538145 | biostudies-literature
| S-EPMC2118350 | biostudies-literature
| S-EPMC3738492 | biostudies-literature