Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case-control and source attribution analysis.
Ontology highlight
ABSTRACT: Several case-control studies have investigated risk factors for human salmonellosis while others have used Salmonella subtyping to attribute human infections to different food and animal reservoirs. This study combined case-control and source attribution data into a single analysis to explore risk factors at the point of exposure for human salmonellosis originating from four putative food-producing animal reservoirs (pigs, cattle, broilers and layers/eggs) in the Netherlands. We confirmed that most human cases (? 90%) were attributable to layers/eggs and pigs. Layers/eggs and broilers were the most likely reservoirs of salmonellosis in adults, in urban areas, and in spring/summer, whereas pigs and cattle were the most likely reservoirs of salmonellosis in children, in rural areas, and in autumn/winter. Several reservoir-specific risk factors were identified. Not using a chopping board for raw meat only and consuming raw/undercooked meat were risk factors for infection with salmonellas originating from pigs, cattle and broilers. Consuming raw/undercooked eggs and by-products were risk factors for layer/egg-associated salmonellosis. Using antibiotics was a risk factor for pig- and cattle-associated salmonellosis and using proton-pump inhibitors for salmonellosis attributable to any reservoir. Pig- and cattle-associated infections were also linked to direct contact with animals and environmental exposure (e.g. playing in sandboxes). Eating fish, meat in pastry, and several non-meat foods (fruit, vegetables and pasteurized dairy products) were protective factors. Consuming pork and occupational exposure to animals and/or raw meats were protective against layer/egg-associated salmonellosis. We concluded that individuals acquiring salmonellosis from different reservoirs have different associated risk factors, suggesting that salmonellas may infect humans through various transmission pathways depending on their original reservoirs. The outcome of classical case-control studies can be enhanced by incorporating source attribution data and vice versa.
SUBMITTER: Mughini-Gras L
PROVIDER: S-EPMC3913680 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA