Unknown

Dataset Information

0

Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance.


ABSTRACT: Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues, which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities that are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems that could not be effectively solved in the past and include overcoming formulation issues, multidrug-resistance phenomenon, and penetrating cellular barriers that may limit device accessibility to intended targets, such as the blood-brain barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise toward new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics.

SUBMITTER: Zamboni WC 

PROVIDER: S-EPMC3916007 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance.

Zamboni William C WC   Torchilin Vladimir V   Patri Anil K AK   Hrkach Jeff J   Stern Stephen S   Lee Robert R   Nel Andre A   Panaro Nicholas J NJ   Grodzinski Piotr P  

Clinical cancer research : an official journal of the American Association for Cancer Research 20120605 12


Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues, which has hampered  ...[more]

Similar Datasets

| S-EPMC6624848 | biostudies-literature
2018-06-08 | GSE107768 | GEO
2018-06-08 | GSE107767 | GEO
2018-06-08 | GSE107766 | GEO
2024-04-30 | GSE230765 | GEO
2021-02-24 | GSE158480 | GEO
| S-EPMC8235113 | biostudies-literature
| S-EPMC6788937 | biostudies-literature
| S-EPMC5219856 | biostudies-literature
| PRJNA421341 | ENA