Ontology highlight
ABSTRACT: Background
According to cancer-related microRNA (miRNA) expression microarray research available in public databases, miR-362 expression is elevated in gastric cancer. However, the expression and biological role of miR-362 in gastric progression remain unclear.Methods
miR-362 expression levels in gastric cancer tissues and cell lines were determined using real-time PCR. The roles of miR-362, in promoting gastric cancer cell proliferation and apoptosis resistance, were assessed by different biological assays, such as colony assay, flow cytometry and TUNEL assay. The effect of miR-362 on NF-κB activation was investigated using the luciferase reporter assay, fluorescent immunostaining.Results
MiR-362 overexpression induced cell proliferation, colony formation, and resistance to cisplatin-induced apoptosis in BGC-823 and SGC-7901 gastric cancer cells. MiR-362 increased NF-κB activity and relative mRNA expression of NF-κB-regulated genes, and induced nuclear translocation of p65. Expression of the tumor suppressor CYLD was inhibited by miR-362 in gastric cancer cells; miR-362 levels were inversely correlated with CYLD expression in gastric cancer tissue. MiR-362 downregulated CYLD expression by binding its 3' untranslated region. NF-κB activation was mechanistically associated with siRNA-mediated downregulation of CYLD. MiR-362 inhibitor reversed all the effects of miR-362.Conclusion
The results suggest that miR-362 plays an important role in repressing the tumor suppressor CYLD and present a novel mechanism of miRNA-mediated NF-κB activation in gastric cancer.
SUBMITTER: Xia JT
PROVIDER: S-EPMC3916099 | biostudies-literature |
REPOSITORIES: biostudies-literature