Unknown

Dataset Information

0

Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice.


ABSTRACT: BACKGROUND & AIMS:Treatment of inflammatory bowel disease would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine interleukin (IL)-27, which is synthesized actively in situ by the food-grade bacterium Lactococcus lactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS:The 2 genes encoding mouse IL-27 were synthesized with optimal codon use for L lactis and joined with a linker; a signal sequence was added to allow for product secretion. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(-/-) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS:LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced the numbers of CD4(+) and IL-17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL-10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL-27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice after administration of dextran sodium sulfate. CONCLUSIONS:LL-IL-27 reduces colitis in mice by increasing the production of IL-10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for inflammatory bowel disease.

SUBMITTER: Hanson ML 

PROVIDER: S-EPMC3920828 | biostudies-literature | 2014 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background & aims</h4>Treatment of inflammatory bowel disease would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine interleukin (IL)-27, which is synthesized actively in situ by the food-grade bacterium Lactococcus lactis (LL-IL-27), and tested its ability to reduce colitis in mice.<h4>Methods</h4>The 2 genes encoding mouse IL-27 were synthesized with optimal codon use for L lactis and joined w  ...[more]

Similar Datasets

| S-EPMC5533920 | biostudies-literature
| S-EPMC3804113 | biostudies-literature
| S-EPMC7524482 | biostudies-literature
| S-EPMC9750758 | biostudies-literature
| S-EPMC9220267 | biostudies-literature
| S-EPMC5881712 | biostudies-literature
| S-EPMC5804395 | biostudies-literature
| S-EPMC8806804 | biostudies-literature
| S-EPMC4340892 | biostudies-other
| S-EPMC7890079 | biostudies-literature