Expanding the understanding of local community assembly in adaptive radiations.
Ontology highlight
ABSTRACT: COMMUNITIES ARE THOUGHT TO BE ASSEMBLED BY TWO TYPES OF FILTERS:by the environment relating to the fundamental niche and by biotic interactions relating to the realized niche. Both filters include parameters related to functional traits and their variation along environmental gradients. Here, we infer the general importance of environmental filtering of a functional trait determining local community assembly within insular adaptive radiations on the example of Caribbean Anolis lizards. We constructed maps for the probability of presence of Anolis ecomorphs (ecology-morphology-behavior specialists) on the Greater Antilles and overlaid these to estimate ecomorph community completeness (ECC) over the landscape. We then tested for differences in environmental parameter spaces among islands for real and cross-fitted ECC values to see whether the underlying assembly filters are deterministic (i.e., similar among islands). We then compared information-theoretic models of climatic and landscape parameters among Greater Antillean islands and inferred whether body mass as functional trait determines ECC. We found areas with high ECC to be strongly correlated with environmental filters, partly related to elevation. The environmental parameters influencing high ECC differed among islands. With the exception of the Jamaican twig ecomorph (which we suspect to be misclassified), smaller ecomorphs were more restricted to higher elevations than larger ones which might reflect filtering on the basis of differential physiological restrictions of ecomorphs. Our results in Anolis show that local community assembly within adaptive island radiations of animals can be determined by environmental filtering of functional traits, independently from species composition and realized environmental niche space.
SUBMITTER: Wollenberg KC
PROVIDER: S-EPMC3925381 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA