Unknown

Dataset Information

0

Meta-analysis of gene-level tests for rare variant association.


ABSTRACT: The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ?18,500 individuals genotyped with exome arrays.

SUBMITTER: Liu DJ 

PROVIDER: S-EPMC3939031 | biostudies-literature | 2014 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications


The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new appr  ...[more]

Similar Datasets

| S-EPMC4968883 | biostudies-literature
| S-EPMC4085641 | biostudies-literature
| S-EPMC3738834 | biostudies-literature
| S-EPMC4127117 | biostudies-literature
| S-EPMC5603735 | biostudies-literature
| S-EPMC3718063 | biostudies-literature
| S-EPMC4121482 | biostudies-literature
| S-EPMC3440237 | biostudies-literature
| S-EPMC5980755 | biostudies-literature
| S-EPMC6980317 | biostudies-literature