G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding.
Ontology highlight
ABSTRACT: Human telomeres terminate with a single-stranded 3' G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) conformations. It remains unclear whether GQ formation affects the ability of POT1/TPP1 to compete against RPA to access ssTEL. Using single-molecule Förster resonance energy transfer, we showed that POT1 stably loads to a minimal DNA sequence adjacent to a folded GQ. At 150 mM K(+), POT1 loading unfolds the antiparallel GQ, as the parallel conformation remains folded. POT1/TPP1 loading blocks RPA's access to both folded and unfolded telomeres by two orders of magnitude. This protection is not observed at 150 mM Na(+), in which ssTEL forms only a less-stable antiparallel GQ. These results suggest that GQ formation of telomeric overhangs may contribute to suppression of DNA damage signals.
SUBMITTER: Ray S
PROVIDER: S-EPMC3939921 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA