Unknown

Dataset Information

0

Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma.


ABSTRACT: There is growing evidence that antiangiogenic therapy stimulates cancer cell invasion and metastasis. However, the underlying molecular mechanisms responsible for these changes have not been fully defined. Here, we report that anti-VEGF therapy promotes local invasion and metastasis by inducing collagen signaling in cancer cells. We show that chronic VEGF inhibition in a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDA) induces hypoxia, a less differentiated mesenchymal-like tumor cell phenotype, TGF-? expression, and collagen deposition and signaling. In addition, we show that collagen signaling is critical for protumorigenic activity of TGF-? in vitro. To further model the impact of collagen signaling in tumors, we evaluated PDA in mice lacking Sparc, a protein that reduces collagen binding to cell surface receptors. Importantly, we show that loss of Sparc increases collagen signaling and tumor progression. Together, these findings suggest that collagen actively promotes PDA spread and that enhanced disease progression associated with anti-VEGF therapy can arise from elevated extracellular matrix-mediated signaling.

SUBMITTER: Aguilera KY 

PROVIDER: S-EPMC3944405 | biostudies-literature | 2014 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma.

Aguilera Kristina Y KY   Rivera Lee B LB   Hur Hoon H   Carbon Juliet G JG   Toombs Jason E JE   Goldstein Courtney D CD   Dellinger Michael T MT   Castrillon Diego H DH   Brekken Rolf A RA  

Cancer research 20131217 4


There is growing evidence that antiangiogenic therapy stimulates cancer cell invasion and metastasis. However, the underlying molecular mechanisms responsible for these changes have not been fully defined. Here, we report that anti-VEGF therapy promotes local invasion and metastasis by inducing collagen signaling in cancer cells. We show that chronic VEGF inhibition in a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDA) induces hypoxia, a less differentiated mesenchyma  ...[more]

Similar Datasets

| S-EPMC10435408 | biostudies-literature
| S-EPMC5286371 | biostudies-literature
| S-EPMC6700028 | biostudies-literature
| S-EPMC5091937 | biostudies-literature
| S-EPMC9186165 | biostudies-literature
| S-EPMC7136411 | biostudies-literature
| S-EPMC10766200 | biostudies-literature
| S-EPMC6503151 | biostudies-literature
| S-EPMC7906203 | biostudies-literature
| S-EPMC4860133 | biostudies-literature