Unknown

Dataset Information

0

High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells.


ABSTRACT: It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of "4N-ON" and the corresponding "4N-OFF" iPSC lines were compared through deep sequencing analyses of mRNA expression, small RNA profile, histone modifications (H3K27me3, H3K4me3, and H3K4me2), and DNA methylation. We found that methylation of an imprinted gene, Zrsr1, was consistently disrupted in the iPSC lines with reduced pluripotency. Furthermore, the disrupted methylation could not be rescued by improving culture conditions or subcloning of iPSCs. Moreover, the relationship between hypomethylation of Zrsr1 and pluripotency state of iPSCs was further validated in independent iPSC lines derived from other reprogramming systems.

SUBMITTER: Chang G 

PROVIDER: S-EPMC3945885 | biostudies-literature | 2014 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells.

Chang Gang G   Gao Shuai S   Hou Xinfeng X   Xu Zijian Z   Liu Yanfeng Y   Kang Lan L   Tao Yu Y   Liu Wenqiang W   Huang Bo B   Kou Xiaochen X   Chen Jiayu J   An Lei L   Miao Kai K   Di Keqian K   Wang Zhilong Z   Tan Kun K   Cheng Tao T   Cai Tao T   Gao Shaorong S   Tian Jianhui J  

Cell research 20131231 3


It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of "4N-ON" and the corresponding "4N-OF  ...[more]

Similar Datasets

| S-EPMC5390243 | biostudies-literature
| S-EPMC5887227 | biostudies-literature
| S-EPMC6140819 | biostudies-literature
| S-EPMC3502865 | biostudies-literature
| S-EPMC5409837 | biostudies-literature
| S-EPMC4266011 | biostudies-literature
2015-05-08 | E-MTAB-2631 | biostudies-arrayexpress
2015-09-17 | E-MTAB-2634 | biostudies-arrayexpress
| S-EPMC5704956 | biostudies-literature
| S-EPMC5564569 | biostudies-literature