Unknown

Dataset Information

0

Knock-down of CD44 regulates endothelial cell differentiation via NF?B-mediated chemokine production.


ABSTRACT: A striking feature of microvascular endothelial cells is their capacity to fuse and differentiate into tubular structures when grown in three-dimensional (3D) extracellular matrices, in collagen or Matrigel, mimicking the in vivo blood vessel formation. In this study we demonstrate that human telomerase-immortalised foreskin microvascular endothelial (TIME) cells express high levels of the hyaluronan receptor CD44 and the hyaluronidase HYAL2. Knock-down of CD44 or HYAL2 resulted in an inability of TIME cells to form a tubular network, suggesting a key regulatory role of hyaluronan in controlling TIME cell tubulogenesis in 3D matrices. Knock-down of CD44 resulted in an upregulation of mRNA expression of the chemokines CXCL9 and CXCL12, as well as their receptors CXCR3 and CXCR4. This was accompanied by a defect maturation of the tubular structure network and increased phosphorylation of the inhibitor of NF?B kinase (IKK) complex and thus translocation of NF?B into the nucleus and activation of chemokine targed genes. Furthermore, the interaction between CD44 and hyaluronan determines the adhesion of breast cancer cells. In summary, our observations support the notion that the interaction between CD44 and hyaluronan regulates microvascular endothelial cell tubulogenesis by affecting the expression of cytokines and their receptors, as well as breast cancer dissemination.

SUBMITTER: Olofsson B 

PROVIDER: S-EPMC3948721 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Knock-down of CD44 regulates endothelial cell differentiation via NFκB-mediated chemokine production.

Olofsson Berit B   Porsch Helena H   Heldin Paraskevi P  

PloS one 20140310 3


A striking feature of microvascular endothelial cells is their capacity to fuse and differentiate into tubular structures when grown in three-dimensional (3D) extracellular matrices, in collagen or Matrigel, mimicking the in vivo blood vessel formation. In this study we demonstrate that human telomerase-immortalised foreskin microvascular endothelial (TIME) cells express high levels of the hyaluronan receptor CD44 and the hyaluronidase HYAL2. Knock-down of CD44 or HYAL2 resulted in an inability  ...[more]

Similar Datasets

| S-EPMC3458895 | biostudies-literature
| S-EPMC3594183 | biostudies-literature
| S-EPMC4529111 | biostudies-literature
| S-EPMC9376159 | biostudies-literature
| S-EPMC3501721 | biostudies-literature
| S-EPMC5256141 | biostudies-literature
| S-EPMC3224147 | biostudies-literature
| S-EPMC2638760 | biostudies-literature
2014-05-06 | GSE44444 | GEO
| S-EPMC2857529 | biostudies-literature