Unknown

Dataset Information

0

MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1.


ABSTRACT: The phosphoinositide 3-kinase (PI3K)/Akt signalling pathway appears to be a key regulator in cervical carcinogenesis. However, the downstream regulatory mechanism of PI3K/Akt signalling remains largely unknown.The expression of miR-196a in cervical cancer cell lines and cervical cancer tissues was examined using real-time PCR. The effects of miR-196a on PI3K/Akt signalling and cellular proliferation were evaluated by bromodeoxyuridine labelling, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide, colony formation assays and luciferase assays.The expression level of miR-196a was markedly increased in cervical cancer tissues and cell lines compared with normal cervical tissue and normal cervical squamous cells. Upregulation of miR-196a was correlated with advanced tumour stage and poor overall and recurrence-free survival in cervical cancer patients. Upregulation of miR-196a enhanced G1/S-phase transition and the proliferative ability of cervical cancer cells, whereas suppression of miR-196a had the opposite effect. Using bioinformatics and biological approaches, we showed that FOXO1 and p27(Kip1), two key effectors of PI3K/Akt signalling, were direct targets of miR-196a.Our findings suggest that miR-196a has an important role in promoting human cervical cancer cell proliferation and may represent a novel therapeutic target of microRNA-mediated suppression of cell proliferation in cervical cancer.

SUBMITTER: Hou T 

PROVIDER: S-EPMC3950858 | biostudies-literature | 2014 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1.

Hou T T   Ou J J   Zhao X X   Huang X X   Huang Y Y   Zhang Y Y  

British journal of cancer 20140114 5


<h4>Background</h4>The phosphoinositide 3-kinase (PI3K)/Akt signalling pathway appears to be a key regulator in cervical carcinogenesis. However, the downstream regulatory mechanism of PI3K/Akt signalling remains largely unknown.<h4>Methods</h4>The expression of miR-196a in cervical cancer cell lines and cervical cancer tissues was examined using real-time PCR. The effects of miR-196a on PI3K/Akt signalling and cellular proliferation were evaluated by bromodeoxyuridine labelling, 3-(4,5-Dimethyl  ...[more]

Similar Datasets

| S-EPMC4142327 | biostudies-literature
| S-EPMC2118250 | biostudies-literature
| S-EPMC7916186 | biostudies-literature
| S-EPMC4265494 | biostudies-literature
| S-EPMC7074379 | biostudies-literature
| S-EPMC3826519 | biostudies-literature
| S-EPMC3812021 | biostudies-literature
| S-EPMC6393239 | biostudies-literature
| S-EPMC10705059 | biostudies-literature
| S-EPMC8425207 | biostudies-literature