Nonsense-mediated mRNA decay immunity can help identify human polycistronic transcripts.
Ontology highlight
ABSTRACT: Eukaryotic polycistronic transcription units are rare and only a few examples are known, mostly being the outcome of serendipitous discovery. We claim that nonsense-mediated mRNA decay (NMD) immune structure is a common characteristic of polycistronic transcripts, and that this immunity is an emergent property derived from all functional CDSs. The human RefSeq transcriptome was computationally screened for transcripts capable of eliciting NMD, and which contain an additional ORF(s) potentially capable of rescuing the transcript from NMD. Transcripts were further analyzed implementing domain-based strategies in order to estimate the potential of the candidate ORF to encode a functional protein. Consequently, we predict the existence of forty nine novel polycistronic transcripts. Experimental verification was carried out utilizing two different types of analyses. First, five Gene Expression Omnibus (GEO) datasets from published NMD-inhibition studies were used, aiming to explore whether a given mRNA is indeed insensitive to NMD. All known bicistronic transcripts and eleven out of the twelve predicted genes that were analyzed, displayed NMD insensitivity using various NMD inhibitors. For three genes, a mixed expression pattern was observed presenting both NMD sensitivity and insensitivity in different cell types. Second, we used published global translation initiation sequencing data from HEK293 cells to verify the existence of translation initiation sites in our predicted polycistronic genes. In five of our genes, the predicted rescuing uORFs are indeed identified as translation initiation sites, and in two additional genes, one of two predicted rescuing uORF is verified. These results validate our computational analysis and reinforce the possibility that NMD-immune architecture is a parameter by which polycistronic genes can be identified. Moreover, we present evidence for NMD-mediated regulation controlling the production of one or more proteins encoded in the polycistronic transcript.
SUBMITTER: Shahaf G
PROVIDER: S-EPMC3951408 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA