Strength of TCR signal from self-peptide modulates autoreactive thymocyte deletion and Foxp3(+) Treg-cell formation.
Ontology highlight
ABSTRACT: Autoreactive CD4(+) CD8(-) (CD4SP) thymocytes can be subjected to deletion when they encounter self-peptide during their development, but they can also undergo selection to become CD4SPFoxp3(+) Treg cells. We have analyzed the relationship between these distinct developmental fates using mice in which signals transmitted by the TCR have been attenuated by mutation of a critical tyrosine residue of the adapter protein SLP-76. In mice containing polyclonal TCR repertoires, the mutation caused increased frequencies of CD4SPFoxp3(+) thymocytes. CD4SP thymocytes expressing TCR V?-chains that are subjected to deletion by endogenous retroviral superantigens were also present at increased frequencies, particularly among Foxp3(+) thymocytes. In transgenic mice in which CD4SP thymocytes expressing an autoreactive TCR undergo both deletion and Treg-cell formation in response to a defined self-peptide, SLP-76 mutation abrogated deletion of autoreactive CD4SP thymocytes. Notably, Foxp3(+) Treg-cell formation still occurred, albeit with a reduced efficiency, and the mutation was also associated with decreased Nur77 expression by the autoreactive CD4SP thymocytes. These studies provide evidence that the strength of the TCR signal can play a direct role in directing the extent of both thymocyte deletion and Treg-cell differentiation, and suggest that distinct TCR signaling thresholds and/or pathways can promote CD4SP thymocyte deletion versus Treg-cell formation.
SUBMITTER: Caton AJ
PROVIDER: S-EPMC3959276 | biostudies-literature | 2014 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA