Unknown

Dataset Information

0

Fungal Diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica.


ABSTRACT: Fumarolic Ice caves on Antarctica's Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these environments remains largely unknown. However, these habitats could be relatively easily contaminated during human visits. Sixty-one species of fungi were identified from soil clone libraries originating from Warren Cave, a DOVE on Mt. Erebus. The species diversity was greater than has been found in the nearby McMurdo Dry Valleys oligotrophic soil. A relatively large proportion of the clones represented Malassezia species (37% of Basidomycota identified). These fungi are associated with skin surfaces of animals and require high lipid content for growth, indicating that contamination may have occurred through the few and episodic human visits in this particular cave. These findings highlight the importance of fungi to DOVE environments as well as their potential use for identifying contamination by humans. The latter offers compelling evidence suggesting more strict management of these valuable research areas.

SUBMITTER: Connell L 

PROVIDER: S-EPMC3960884 | biostudies-literature | 2013 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fungal Diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica.

Connell Laurie L   Staudigel Hubert H  

Biology 20130530 2


Fumarolic Ice caves on Antarctica's Mt. Erebus contain a dark oligotrophic volcanic ecosystem (DOVE) and represent a deep biosphere habitat that can provide insight into microbial communities that utilize energy sources other than photosynthesis. The community assembly and role of fungi in these environments remains largely unknown. However, these habitats could be relatively easily contaminated during human visits. Sixty-one species of fungi were identified from soil clone libraries originating  ...[more]

Similar Datasets

| S-EPMC4356161 | biostudies-literature
| S-EPMC6704131 | biostudies-literature
| S-EPMC6813331 | biostudies-literature
| S-EPMC7717564 | biostudies-literature
| S-EPMC4055905 | biostudies-other
| S-EPMC6759341 | biostudies-literature
| S-EPMC4900889 | biostudies-literature
| S-EPMC7953305 | biostudies-literature
| S-EPMC3695302 | biostudies-literature
| S-EPMC8375752 | biostudies-literature