Peroxisomal D-bifunctional protein deficiency: three adults diagnosed by whole-exome sequencing.
Ontology highlight
ABSTRACT: OBJECTIVE: To determine the causative genetic lesion in 3 adult siblings with a slowly progressive, juvenile-onset phenotype comprising cerebellar atrophy and ataxia, intellectual decline, hearing loss, hypogonadism, hyperreflexia, a demyelinating sensorimotor neuropathy, and (in 2 of 3 probands) supratentorial white matter changes, in whom numerous prior investigations were nondiagnostic. METHODS: The patients' initial clinical assessment included history and physical examination, cranial MRI, and nerve conduction studies. We performed whole-exome sequencing of all 3 probands, followed by variant annotation and selection of rare, shared, recessive coding changes to identify the gene responsible. We next performed a panel of peroxisomal investigations in blood and cultured fibroblasts, including assessment of D-bifunctional protein (DBP) stability and activity by immunoblot and enzymologic methods, respectively. RESULTS: Exome sequencing identified compound heterozygous mutations in HSD17B4, encoding peroxisomal DBP, in all 3 probands. Both identified mutations alter a conserved residue within the active site of DBP's enoyl-CoA hydratase domain. Routine peroxisomal screening tests, including very long-chain fatty acids and phytanic acid, were normal. DBP enzymatic activity was markedly reduced. CONCLUSION: Exome sequencing provides a powerful and elegant tool in the specific diagnosis of "mild" or "atypical" neurometabolic disorders. Given the broad differential diagnosis and the absence of detectable biochemical abnormalities in blood, molecular testing of HSD17B4 should be considered as a first-line investigation in patients with compatible features.
SUBMITTER: Lines MA
PROVIDER: S-EPMC3963001 | biostudies-literature | 2014 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA