Unknown

Dataset Information

0

Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).


ABSTRACT: Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

SUBMITTER: Fayzullina S 

PROVIDER: S-EPMC3965546 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

Fayzullina Saniya S   Martin Lee J LJ  

PloS one 20140325 3


Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathologica  ...[more]

Similar Datasets

| S-EPMC5179954 | biostudies-literature
| S-EPMC3355207 | biostudies-literature
| S-EPMC4090017 | biostudies-literature
2017-04-10 | GSE86908 | GEO
| S-EPMC3696827 | biostudies-other
| S-EPMC3845193 | biostudies-literature
| S-EPMC5015659 | biostudies-literature
| S-EPMC5725447 | biostudies-literature
| S-EPMC5747328 | biostudies-literature
| S-EPMC2853768 | biostudies-literature