Project description:In this experiment we tested the transcriptome of transgenic Arabidopsis seedlings (5-day-old) constitutively expressing the zinc-finger protein Zat12 (At5g59820) under the control of the 35S-CaMV promoter (Zat12). The transcriptome of these seedlings was compared to that of wild type seedlings grown under the same conditions (WT) and to that of wild type seedlings grown under the same conditions and subjected to a hydrogen peroxide stress (WT+H2O2). Hydrogen peroxide treatment was performed by applying 20 mM hydrogen peroxide for 1 hour. In parallel to these experiments transgenic plants expressing Zat12 were subjected to a similar hydrogen peroxide stress (Zat12+H2O2). All treatments were performed with similar size and age seedlings grown in liquid culture (MS) and sampled at the same time as described by Davletova et al., 2005. Experimenter name = Ron Mittler; Experimenter phone = 1-775-784-1384; Experimenter fax = 1-775-784-1650; Experimenter department = Dept. of Biochemistry; Experimenter institute = University of Nevada; Experimenter address = MS200; Experimenter address = Reno; Experimenter address = Nevada; Experimenter zip/postal_code = 89557; Experimenter country = USA Experiment Overall Design: 12 samples were used in this experiment
Project description:Salmonella enterica serovar Typhimurium is an intracellular pathogen that can survive and replicate within macrophages. One of the host defense mechanisms that Salmonella encounters during infection is the production of reactive oxygen species by the phagocyte NADPH oxidase. Among them, hydrogen peroxide (H(2)O(2)) can diffuse across bacterial membranes and damage biomolecules. Genome analysis allowed us to identify five genes encoding H(2)O(2) degrading enzymes: three catalases (KatE, KatG, and KatN) and two alkyl hydroperoxide reductases (AhpC and TsaA). Inactivation of the five cognate structural genes yielded the HpxF(-) mutant, which exhibited a high sensitivity to exogenous H(2)O(2) and a severe survival defect within macrophages. When the phagocyte NADPH oxidase was inhibited, its proliferation index increased 3.7-fold. Moreover, the overexpression of katG or tsaA in the HpxF(-) background was sufficient to confer a proliferation index similar to that of the wild type in macrophages and a resistance to millimolar H(2)O(2) in rich medium. The HpxF(-) mutant also showed an attenuated virulence in a mouse model. These data indicate that Salmonella catalases and alkyl hydroperoxide reductases are required to degrade H(2)O(2) and contribute to the virulence. This enzymatic redundancy highlights the evolutionary strategies developed by bacterial pathogens to survive within hostile environments.
Project description:Using data from microarray experiments, we investigated the effects of excess hydrogen peroxide on D. vulgaris. Keywords: stress response, time course
Project description:Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions.
Project description:We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.
Project description:Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus.
Project description:Blastocystis is a ubiquitous, widely distributed protist inhabiting the gastrointestinal tract of humans and other animals. The organism is genetically diverse, and so far, at least 28 subtypes (STs) have been identified with ST1-ST9 being the most common in humans. The pathogenicity of Blastocystis is controversial. Several routes of transmission have been proposed including fecal-oral (e.g., zoonotic, anthroponotic) and waterborne. Research on the latter has gained traction in the last few years with the organism having been identified in various bodies of water, tap water, and rainwater collection containers including water that has been previously filtered and/or chlorinated. Herein, we assessed the resistance of 11 strains maintained in culture, spanning ST1-ST9 to various chlorine and hydrogen peroxide concentrations for 24 h, and performed recovery assays along with re-exposure. Following the treatment with both compounds, all subtypes showed increased resistance, and viability could be visualized at the cellular level. These results are hinting at the presence of mechanism of resistance to both chlorine and hydrogen peroxide. As such, this pilot study can be the platform for developing guidelines for water treatment processes.
Project description:Green plants are more robust to hydrogen peroxide (H2O2) stress and contain high endogeneous H2O2 levels which is generated during photorespiration and photosynthesis. Therefore, exgeneous H2O2 application mostly impose oxidative stress. To reduce endogenous H2O2 background, we adopted a strategy which is to grow Arabidopsis seedlings in the dark to eliminate light-induced H2O2 production, thus to reduce the endogenous H2O2 level. Exogenous H2O2 was then applied to induce transcriptome changes. Global gene expression is studied and compared between samples collected under 7d dark, 7d H2O2 treatment under dark and 7d light conditions.
Project description:Using data from microarray experiments, we investigated the effects of excess hydrogen peroxide on D. vulgaris. Keywords: stress response, time course Comparison of wild type and deletion mutant cells treated with 1 mM H2O2 to untreated cells at times of 0 and 120 min. See also Series GSE4447 (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE4447)
Project description:In this experiment we tested the transcriptome of transgenic Arabidopsis seedlings (5-day-old) constitutively expressing the zinc-finger protein Zat12 (At5g59820) under the control of the 35S-CaMV promoter (Zat12). The transcriptome of these seedlings was compared to that of wild type seedlings grown under the same conditions (WT) and to that of wild type seedlings grown under the same conditions and subjected to a hydrogen peroxide stress (WT+H2O2). Hydrogen peroxide treatment was performed by applying 20 mM hydrogen peroxide for 1 hour. In parallel to these experiments transgenic plants expressing Zat12 were subjected to a similar hydrogen peroxide stress (Zat12+H2O2). All treatments were performed with similar size and age seedlings grown in liquid culture (MS) and sampled at the same time as described by Davletova et al., 2005. Experimenter name = Ron Mittler Experimenter phone = 1-775-784-1384 Experimenter fax = 1-775-784-1650 Experimenter department = Dept. of Biochemistry Experimenter institute = University of Nevada Experimenter address = MS200 Experimenter address = Reno Experimenter address = Nevada Experimenter zip/postal_code = 89557 Experimenter country = USA Keywords: genetic_modification_design; stimulus_or_stress_design