Unknown

Dataset Information

0

Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration.


ABSTRACT: The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107-160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin "global positioning system"or "GPS" pathways that are mechanistically parallel.

SUBMITTER: Bernis C 

PROVIDER: S-EPMC3967982 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2743623 | biostudies-literature
| S-EPMC4254504 | biostudies-literature
| S-EPMC3757221 | biostudies-literature
| S-EPMC4051523 | biostudies-literature
| S-EPMC5003251 | biostudies-literature
| S-EPMC6754406 | biostudies-literature
| S-EPMC2865516 | biostudies-literature