Unknown

Dataset Information

0

Deafness gene expression patterns in the mouse cochlea found by microarray analysis.


ABSTRACT: Tonotopy is one of the most fundamental principles of auditory function. While gradients in various morphological and physiological characteristics of the cochlea have been reported, little information is available on gradient patterns of gene expression. In addition, the audiograms in autosomal dominant non syndromic hearing loss can be distinctive, however, the mechanism that accounts for that has not been clarified. We thought that it is possible that tonotopic gradients of gene expression within the cochlea account for the distinct audiograms.We compared expression profiles of genes in the cochlea between the apical, middle, and basal turns of the mouse cochlea by microarray technology and quantitative RT-PCR. Of 24,547 genes, 783 annotated genes expressed more than 2-fold. The most remarkable finding was a gradient of gene expression changes in four genes (Pou4f3, Slc17a8, Tmc1, and Crym) whose mutations cause autosomal dominant deafness. Expression of these genes was greater in the apex than in the base. Interestingly, expression of the Emilin-2 and Tectb genes, which may have crucial roles in the cochlea, was also greater in the apex than in the base.This study provides baseline data of gradient gene expression in the cochlea. Especially for genes whose mutations cause autosomal dominant non syndromic hearing loss (Pou4f3, Slc17a8, Tmc1, and Crym) as well as genes important for cochlear function (Emilin-2 and Tectb), gradual expression changes may help to explain the various pathological conditions.

SUBMITTER: Yoshimura H 

PROVIDER: S-EPMC3967995 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deafness gene expression patterns in the mouse cochlea found by microarray analysis.

Yoshimura Hidekane H   Takumi Yutaka Y   Nishio Shin-ya SY   Suzuki Nobuyoshi N   Iwasa Yoh-ichiro Y   Usami Shin-ichi S  

PloS one 20140327 3


<h4>Background</h4>Tonotopy is one of the most fundamental principles of auditory function. While gradients in various morphological and physiological characteristics of the cochlea have been reported, little information is available on gradient patterns of gene expression. In addition, the audiograms in autosomal dominant non syndromic hearing loss can be distinctive, however, the mechanism that accounts for that has not been clarified. We thought that it is possible that tonotopic gradients of  ...[more]

Similar Datasets

2014-01-08 | GSE53863 | GEO
2014-01-08 | E-GEOD-53863 | biostudies-arrayexpress
| S-EPMC2504641 | biostudies-literature
| S-EPMC1683564 | biostudies-literature
| S-EPMC5432924 | biostudies-literature
| S-EPMC3395647 | biostudies-literature
| S-EPMC3599598 | biostudies-literature
| S-EPMC2957154 | biostudies-literature
| S-EPMC2890980 | biostudies-literature
| S-EPMC97568 | biostudies-literature